This example is set up in Vollkorn. It uses:
ge[upright]\{fourier\}\usepackage\{vollkorn\}\usepackage[noasterisk,defaultmathsizes]\{mathastext\}TypesetwithmathastextI.I3(20II/O3/II).undefined

To illustrate some Hilbert Space properties of the co-Poisson summation, we will assume $K=\mathbf{Q}$. The components (a_{v}) of an adele a are written a_{p} at finite places and a_{r} at the real place. We have an embedding of the Schwartz space of test-functions on \mathbf{R} into the BruhatSchwartz space on \mathbf{A} which sends $\psi(\mathrm{x})$ to $\varphi(\mathrm{a})=\prod_{\mathrm{p}} \mathbf{I}_{\mathrm{ap}_{\mathrm{p}} \leq \mathrm{p}}\left(\mathrm{a}_{\mathrm{p}}\right) \cdot \psi\left(\mathrm{a}_{\mathrm{r}}\right)$, and we write $E_{\mathbf{R}}^{\prime}(\mathrm{g})$ for the distribution on \mathbf{R} thus obtained from $\mathrm{E}^{\prime}(\mathrm{g})$ on \mathbf{A}.

Theorem I. Let g be a compact Bruhat-Schwartz function on the ideles of Q. The co-Poisson summation $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})$ is a square-integrable function (with respect to the Lebesgue measure). The $\mathrm{L}^{2}(\mathbf{R})$ function $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})$ is equal to the constant $-\int_{\mathbf{A}^{\times}} \mathrm{g}(\mathrm{v})|\mathrm{v}|^{-\mathrm{I} / 2} \mathrm{~d}^{*} \mathrm{v}$ in a neighborhood of the origin.
Proof. We may first, without changing anything to $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})$, replace g with its average under the action of the finite unit ideles, so that it may be assumed invariant. Any such compact invariant g is a finite linear combination of suitable multiplicative translates of functions of the type $g(v)=\prod_{p} \mathbf{I}_{\mathrm{v}_{\mathrm{p}} \mid \mathrm{p}=\mathrm{I}}\left(\mathrm{v}_{\mathrm{p}}\right) \cdot f\left(\mathrm{v}_{\mathrm{r}}\right)$ with $\mathrm{f}(\mathrm{t})$ a smooth compactly supported function on \mathbf{R}^{\times}, so that we may assume that g has this form. We claim that:

$$
\int_{\mathbf{A}^{\times}}|\varphi(\mathrm{v})| \sum_{\mathrm{q} \in \mathbf{Q}^{\times}}|\mathrm{g}(\mathrm{qv})| \sqrt{|\mathrm{v}|} \mathrm{d}^{*} \mathrm{v}<\infty
$$

Indeed $\sum_{\mathbf{q} \in \mathbf{Q}^{\times}}|\mathrm{g}(\mathrm{qv})|=|\mathrm{f}(|\mathrm{v}|)|+|\mathrm{f}(-|\mathrm{v}|)|$ is bounded above by a multiple of $|\mathrm{v}|$. And $\int_{\mathbf{A}^{\times}}|\varphi(\mathrm{v}) \| \mathrm{v}|^{3 / 2} \mathrm{~d}^{*} \mathrm{v}<\infty$ for each Bruhat-Schwartz function on the adeles (basically, from $\left.\Pi_{\mathrm{p}}\left(\mathrm{I}-\mathrm{p}^{-3 / 2}\right)^{-1}<\infty\right)$. So

$$
\begin{aligned}
& \mathrm{E}^{\prime}(\mathrm{g})(\varphi)=\sum_{\mathrm{q} \in \mathbf{Q}^{\times}} \int_{\mathbf{A}^{\times}} \varphi(\mathrm{v}) \mathrm{g}(\mathrm{qv}) \sqrt{|\mathrm{v}|} \mathrm{d}^{*} \mathrm{v}-\int_{\mathbf{A}^{\times}} \frac{\mathrm{g}(\mathrm{v})}{\sqrt{|\mathrm{v}|}} \mathrm{d}^{*} \mathrm{v} \int_{\mathbf{A}} \varphi(\mathrm{x}) \mathrm{dx} \\
& \mathrm{E}^{\prime}(\mathrm{g})(\varphi)=\sum_{\mathrm{q} \in \mathbf{Q}^{\times}} \int_{\mathbf{A}^{\times}} \varphi(\mathrm{v} / \mathrm{q}) \mathrm{g}(\mathrm{v}) \sqrt{|\mathrm{v}| d^{*} \mathrm{v}-\int_{\mathbf{A}^{\times}} \frac{\mathrm{g}(\mathrm{v})}{\sqrt{|\mathrm{v}|}} \mathrm{d}^{*} \mathrm{v} \int_{\mathbf{A}} \varphi(\mathrm{x}) \mathrm{dx}}
\end{aligned}
$$

Let us now specialize to $\varphi(\mathrm{a})=\prod_{\mathrm{p}} \mathbf{I}_{\mathrm{app}_{\mathrm{p}} \leq \mathrm{I}}\left(\mathrm{a}_{\mathrm{p}}\right) \cdot \psi\left(\mathrm{a}_{\mathrm{r}}\right)$. Each integral can be evaluated as an infinite product. The finite places contribute o or I according to whether $q \in \mathbf{Q}^{\times}$satisfies $|q|_{p}<$ I or not. So only the inverse integers $\mathrm{q}=\mathrm{I} / \mathrm{n}, \mathrm{n} \in \mathbf{Z}$, contribute:

$$
\mathrm{E}_{\mathbf{R}^{\prime}}^{\prime}(\mathrm{g})(\psi)=\sum_{\mathrm{n} \in \mathbf{Z}^{\times}} \int_{\mathbf{R}^{\times}} \psi(\mathrm{nt}) \mathrm{f}(\mathrm{t}) \sqrt{|\mathrm{tt}|} \frac{\mathrm{dt}}{2|\mathrm{t}|}-\int_{\mathbf{R}^{\times}} \frac{\mathrm{f}(\mathrm{t})}{\sqrt{\mid \mathrm{t}}} \frac{\mathrm{dt}}{2|\mathrm{t}|} \int_{\mathbf{R}} \psi(\mathrm{x}) \mathrm{dx}
$$

We can now revert the steps, but this time on \mathbf{R}^{\times}and we get:

$$
\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})(\psi)=\int_{\mathbf{R}^{\times}} \psi(\mathrm{t}) \sum_{\mathrm{n} \in \mathbf{Z}^{\times}} \frac{\mathrm{f}(\mathrm{t} / \mathrm{n})}{\sqrt{|\mathrm{n}|}} \frac{\mathrm{dt}}{2 \sqrt{|t|}}-\int_{\mathbf{R}^{\times}} \frac{\mathrm{f}(\mathrm{t})}{\sqrt{|\mathrm{t}|}} \frac{\mathrm{dt}}{2|\mathrm{t}|} \int_{\mathbf{R}} \psi(\mathrm{x}) \mathrm{dx}
$$

Let us express this in terms of $\alpha(y)=(f(y)+f(-y)) / 2 \sqrt{|y|}$:

$$
\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})(\psi)=\int_{\mathbf{R}} \psi(\mathrm{y}) \sum_{\mathrm{n} \geq \mathrm{I}} \frac{\alpha(\mathrm{y} / \mathrm{n})}{\mathrm{n}} \mathrm{dy}-\int_{\mathrm{O}}^{\infty} \frac{\alpha(\mathrm{y})}{\mathrm{y}} \mathrm{dy} \int_{\mathbf{R}} \psi(\mathrm{x}) \mathrm{dx}
$$

So the distribution $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})$ is in f act the even smooth function

$$
E_{\mathbf{R}}^{\prime}(\mathrm{g})(\mathrm{y})=\sum_{\mathrm{n} \geq \mathrm{I}} \frac{\alpha(\mathrm{y} / \mathrm{n})}{\mathrm{n}}-\int_{0}^{\infty} \frac{\alpha(\mathrm{y})}{\mathrm{y}} \mathrm{dy}
$$

As $\alpha(\mathrm{y})$ has compact support in $\mathbf{R} \backslash\{\mathrm{o}\}$, the summation over $\mathrm{n} \geq \mathrm{I}$ contains only vanishing terms for $|\mathrm{y}|$ small enough. So $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})$ is equal to the constant $-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y=-\int_{\mathbf{R}^{\times}} \frac{f(y)}{\sqrt{|y|} \mid} \frac{d y}{2|y|}=-\int_{\mathbf{A}^{\times}} g(t) / \sqrt{|t|} d^{*}$ t in a neighborhood of o. To prove that it is L^{2}, let $\beta(y)$ be the smooth compactly supported function $\alpha(\mathrm{I} / \mathrm{y}) / 2|y|$ of $y \in \mathbf{R}(\beta(\mathrm{o})=\mathrm{o})$. Then $(\mathrm{y} \neq \mathrm{o})$:

$$
\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})(\mathrm{y})=\sum_{\mathrm{n} \in \mathbf{Z}} \frac{\mathrm{I}}{|\mathrm{y}|} \beta\left(\frac{\mathrm{n}}{\mathrm{y}}\right)-\int_{\mathbf{R}} \beta(\mathrm{y}) \mathrm{dy}
$$

From the usual Poisson summation formula, this is also:

$$
\sum_{\mathrm{n} \in \mathbf{Z}} \gamma(\mathrm{ny})-\int_{\mathbf{R}} \beta(\mathrm{y}) \mathrm{dy}=\sum_{\mathrm{n} \neq \mathrm{o}} \gamma(\mathrm{ny})
$$

where $\gamma(y)=\int_{\mathbf{R}} \exp (\mathrm{i} 2 \pi y w) \beta(\mathrm{w}) \mathrm{dw}$ is a Schwartz rapidly decreasing function. From this formula we deduce easily that $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})(\mathrm{y})$ is itself in the Schwartz class of rapidly decreasing functions, and in particular it is is square-integrable.

It is useful to recapitulate some of the results arising in this proof:
Theorem 2. Let g be a compact Bruhat-Schwartz function on the ideles of \mathbf{Q}. The co-Poisson summation $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})$ is an even function on \mathbf{R} in the Schwartz class of rapidly decreasing functions. It is constant, as well as its Fourier Transform, in a neighborhood of the origin. It may be written as

$$
E_{\mathbf{R}}^{\prime}(\mathrm{g})(\mathrm{y})=\sum_{\mathrm{n} \geq \mathrm{I}} \frac{\alpha(\mathrm{y} / \mathrm{n})}{\mathrm{n}}-\int_{0}^{\infty} \frac{\alpha(\mathrm{y})}{\mathrm{y}} \mathrm{dy}
$$

with a function $\alpha(\mathrm{y})$ smooth with compact support away from the origin, and conversely each such formula corresponds to the co-Poisson summation $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})$ of a compact Bruhat-Schwartz function on the ideles of \mathbf{Q}. The Fourier transform $\int_{\mathbf{R}} \mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})(\mathrm{y}) \exp (\mathrm{i} 2 \pi \mathrm{wy})$ dy corresponds in the formula above to the replacement $\alpha(\mathrm{y}) \mapsto \alpha(\mathrm{I} / \mathrm{y}) /|\mathrm{y}|$.

Everything has been obtained previously.

