This example is set up in New Century SchoolBook. It uses:

```
\usepackage[T1]{fontenc}
\usepackage {newcent }
\usepackage[symbolgreek,%
    symbolre, defaultmathsizes]{mathastext}
\MathastextSymbolScale{1.08}
\linespread{1.1}
```

Typeset with mathastext 1.13 (2011/03/11).

To illustrate some Hilbert Space properties of the co-Poisson summation, we will assume $K=\mathbf{Q}$. The components ( $a_{v}$ ) of an adele $a$ are written $a_{p}$ at finite places and $a_{r}$ at the real place. We have an embedding of the Schwartz space of test-functions on $\mathbf{R}$ into the Bruhat-Schwartz space on $\mathbf{A}$ which sends $\psi(\mathrm{x})$ to $\varphi(\mathrm{a})=$ $\prod_{p} \mathbf{1}_{\left.\left.\right|_{\mathrm{a}}\right|_{\mathrm{p}} \leq 1}\left(\mathrm{a}_{\mathrm{p}}\right) \cdot \psi\left(\mathrm{a}_{\mathrm{r}}\right)$, and we write $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})$ for the distribution on $\mathbf{R}$ thus obtained from $\mathrm{E}^{\prime}(\mathrm{g})$ on $\mathbf{A}$.

Theorem 1. Let g be a compact Bruhat-Schwartz function on the ideles of $\mathbf{Q}$. The co-Poisson summation $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})$ is a squareintegrable function (with respect to the Lebesgue measure). The $\mathrm{L}^{2}(\mathbf{R})$ function $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})$ is equal to the constant $-\int_{\mathbf{A}^{\times}} \mathrm{g}(\mathrm{v}) \mid \mathrm{v} \mathrm{I}^{-1 / 2} \mathrm{~d}^{*} \mathrm{v}$ in a neighborhood of the origin.

Proof. We may first, without changing anything to $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})$, replace $g$ with its average under the action of the finite unit ideles, so that it may be assumed invariant. Any such compact invariant g is a finite linear combination of suitable multiplicative translates of
 compactly supported function on $\mathbf{R}^{\times}$, so that we may assume that $g$ has this form. We claim that:

$$
\int_{\mathbf{A}^{\times}}|\varphi(v)| \sum_{q \in \boldsymbol{Q}^{\times}}|g(q v)| \sqrt{|v|} d^{*} v<\infty
$$

Indeed $\sum_{q \in \mathbf{Q}^{\times}}|g(q v)|=|f(|v|)|+|f(-|v|)|$ is bounded above by a multiple of $|v|$. And $\int_{\mathbf{A}^{\times}}|\varphi(v)||v|^{3 / 2} d^{*} v<\infty$ for each BruhatSchwartz function on the adeles (basically, from $\prod_{p}\left(1-\mathrm{p}^{-3 / 2}\right)^{-1}<$ $\infty)$. So

$$
\begin{aligned}
& \mathrm{E}^{\prime}(\mathrm{g})(\varphi)=\sum_{\mathrm{q} \in \mathbf{Q}^{\times}} \int_{\mathbf{A}^{\times}} \varphi(\mathrm{v}) \mathrm{g}(\mathrm{qv}) \sqrt{|\mathrm{v}|} d^{*} \mathrm{v}-\int_{\mathbf{A}^{\times}} \frac{\mathrm{g}(\mathrm{v})}{\sqrt{|\mathrm{v}|}} \mathrm{d}^{*} \mathrm{v} \int_{\mathbf{A}} \varphi(\mathrm{x}) \mathrm{dx} \\
& \mathrm{E}^{\prime}(\mathrm{g})(\varphi)=\sum_{\mathrm{q} \in \mathbf{Q}^{\times}} \int_{\mathbf{A}^{\times}} \varphi(\mathrm{v} / q) g(\mathrm{v}) \sqrt{|\mathrm{v}|} d^{*} v-\int_{\mathbf{A}^{\times}} \frac{g(v)}{\sqrt{|\mathrm{v}|}} \mathrm{d}^{*} v \int_{\mathbf{A}} \varphi(\mathrm{x}) \mathrm{dx}
\end{aligned}
$$

Let us now specialize to $\varphi(a)=\prod_{p} \mathbf{1}_{\left|a_{p}\right|_{p} \leq 1}\left(a_{p}\right) \cdot \psi\left(a_{r}\right)$. Each integral can be evaluated as an infinite product. The finite places contribute 0 or 1 according to whether $q \in \mathbf{Q}^{\times}$satisfies $|q|_{p}<1$
or not. So only the inverse integers $q=1 / n, n \in \mathbf{Z}$, contribute:

$$
\mathrm{E}_{\mathbf{R}^{\prime}}^{\prime}(\mathrm{g})(\psi)=\sum_{\mathrm{n} \in \mathbf{Z}^{\times}} \int_{\mathbf{R}^{\times}} \psi(\mathrm{nt}) \mathrm{f}(\mathrm{t}) \sqrt{\mid \mathrm{tt\mid}} \frac{\mathrm{dt}}{2|\mathrm{t\mid}|}-\int_{\mathbf{R}^{\times}} \frac{\mathrm{f}(\mathrm{t})}{\sqrt{|\mathrm{t}|}} \frac{\mathrm{dt}}{2 \mid \mathrm{tt\mid}} \int_{\mathbf{R}} \psi(\mathrm{x}) \mathrm{dx}
$$

We can now revert the steps, but this time on $\mathbf{R}^{\times}$and we get:

$$
\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})(\psi)=\int_{\mathbf{R}^{\times}} \psi(\mathrm{t}) \sum_{\mathrm{n} \in \mathbf{Z}^{\times}} \frac{\mathrm{f}(\mathrm{t} / \mathrm{n})}{\sqrt{|\mathrm{n}|}} \frac{\mathrm{dt}}{2 \sqrt{|\mathrm{t}|}}-\int_{\mathbf{R}^{\times}} \frac{\mathrm{f}(\mathrm{t})}{\sqrt{\mid \mathrm{tt\mid}}} \frac{\mathrm{dt}}{2|\mathrm{t}|} \int_{\mathbf{R}} \psi(\mathrm{x}) \mathrm{dx}
$$

Let us express this in terms of $\alpha(y)=(f(y)+f(-y)) / 2 \sqrt{|y|}$ :

$$
\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})(\psi)=\int_{\mathbf{R}} \psi(\mathrm{y}) \sum_{\mathrm{n} \geq 1} \frac{\alpha(\mathrm{y} / \mathrm{n})}{\mathrm{n}} \mathrm{dy}-\int_{0}^{\infty} \frac{\alpha(\mathrm{y})}{\mathrm{y}} \mathrm{dy} \int_{\mathbf{R}} \psi(\mathrm{x}) \mathrm{dx}
$$

So the distribution $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})$ is in fact the even smooth function

$$
\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})(\mathrm{y})=\sum_{\mathrm{n} \geq 1} \frac{\alpha(\mathrm{y} / \mathrm{n})}{\mathrm{n}}-\int_{0}^{\infty} \frac{\alpha(\mathrm{y})}{\mathrm{y}} \mathrm{dy}
$$

As $\alpha(\mathrm{y})$ has compact support in $\mathbf{R} \backslash\{0\}$, the summation over $\mathrm{n} \geq 1$ contains only vanishing terms for $|y|$ small enough. $\operatorname{So~}_{\mathrm{E}_{\mathbf{R}}^{\prime}}^{\prime}(\mathrm{g})$ is equal to the constant $-\int_{0}^{\infty} \frac{\alpha(y)}{\mathrm{y}} \mathrm{dy}=-\int_{\mathbf{R}^{\times}} \frac{\mathrm{f}(\mathrm{y})}{\sqrt{|\mathrm{y}|}} \frac{\mathrm{dy}}{2|\mathrm{y}|}=-\int_{\mathbf{A}^{\times}} \mathrm{g}(\mathrm{t}) / \sqrt{|\mathrm{t}|} \mathrm{d}^{*} \mathrm{t}$ in a neighborhood of 0 . To prove that it is $L^{2}$, let $\beta(y)$ be the smooth compactly supported function $\alpha(1 / y) / 2|y|$ of $y \in \mathbf{R}(\beta(0)=$ $0)$. Then $(y \neq 0)$ :

$$
E_{\mathbf{R}}^{\prime}(g)(y)=\sum_{\mathrm{n} \in \mathbf{Z}} \frac{1}{|\mathrm{y}|} \beta\left(\frac{\mathrm{n}}{\mathrm{y}}\right)-\int_{\mathbf{R}} \beta(\mathrm{y}) \mathrm{dy}
$$

From the usual Poisson summation formula, this is also:

$$
\sum_{\mathrm{n} \in \mathbf{Z}} \gamma(\mathrm{ny})-\int_{\mathbf{R}} \beta(\mathrm{y}) \mathrm{dy}=\sum_{\mathrm{n} \neq 0} \gamma(\mathrm{ny})
$$

where $\gamma(\mathrm{y})=\int_{\mathbf{R}} \exp (\mathrm{i} 2 \pi y \mathrm{y}) \beta(\mathrm{w}) \mathrm{dw}$ is a Schwartz rapidly decreasing function. From this formula we deduce easily that $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})(\mathrm{y})$ is itself in the Schwartz class of rapidly decreasing functions, and in particular it is is square-integrable.

It is useful to recapitulate some of the results arising in this proof:

Theorem 2. Let g be a compact Bruhat-Schwartz function on the ideles of $\mathbf{Q}$. The co-Poisson summation $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})$ is an even function on $\mathbf{R}$ in the Schwartz class of rapidly decreasing functions. It is constant, as well as its Fourier Transform, in a neighborhood of the origin. It may be written as

$$
\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})(\mathrm{y})=\sum_{\mathrm{n} \geq 1} \frac{\alpha(\mathrm{y} / \mathrm{n})}{\mathrm{n}}-\int_{0}^{\infty} \frac{\alpha(\mathrm{y})}{\mathrm{y}} \mathrm{dy}
$$

with a function $\alpha(\mathrm{y})$ smooth with compact support away from the origin, and conversely each such formula corresponds to the coPoisson summation $\mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})$ of a compact Bruhat-Schwartz function on the ideles of $\mathbf{Q}$. The Fourier transform $\int_{\mathbf{R}} \mathrm{E}_{\mathbf{R}}^{\prime}(\mathrm{g})(\mathrm{y}) \exp (\mathrm{i} 2 \pi \mathrm{wy}) \mathrm{dy}$ corresponds in the formula above to the replacement $\alpha(\mathrm{y}) \mapsto \alpha(1 / \mathrm{y}) / \mathrm{y} \mid$.

Everything has been obtained previously.

