This example is set up in Libris ADF. It uses:
e[T1]\{fontenc\}\usepackage[upright]\{fourier\}\usepackage\{libris\}\backslashrenewcommand\{\familydefault\}\{\sfdefault\}\usepackage[noasterisk]\{mathastext\}Typesetwithmathastext1.13(20II/03/II).undefined

To illustrate some Hilbert Space properties of the co-Poisson summation, we will assume $K=Q$. The components $\left(a_{v}\right)$ of an adele a are written a_{p} at finite places and ar_{r} at the real place. We have an embedding of the Schwartz space of test-functions on R into the Bruhat-Schwartz space on A which sends $\psi(x)$ to $\varphi(a)=\prod_{p} l_{a_{p} \mid p \leq 1}\left(a_{p}\right) \cdot \psi\left(a_{r}\right)$, and we write $E_{R}^{\prime}(\mathrm{g})$ for the distribution on R thus obtained from $E^{\prime}(\mathrm{g})$ on A.
Theorem I. Let \mathfrak{g} be a compact Bruhat-Schwartz function on the ideles of \mathbf{Q}. The co-Poisson summation $\mathrm{E}_{\mathrm{R}}^{\prime}(\mathrm{g})$ is a square-integrable function (with respect to the Lebesgue measure). The $\mathrm{L}^{2}(\mathrm{R})$ function $\mathrm{E}_{\mathrm{R}}^{\prime}(\mathrm{g})$ is equal to the constant $-\int_{A^{\times}} \mathrm{g}(\mathrm{v})|\mathrm{v}|^{-1 / 2} \mathrm{~d}^{*} \mathrm{v}$ in a neighborhood of the origin.
Proof. We may first, without changing anything to $E_{R}^{\prime}(g)$, replace g with its average under the action of the finite unit ideles, so that it may be assumed invariant. Any such compact invariant g is a finite linear combination of suitable multiplicative translates of functions of the type $g(v)=\prod_{p} \mathrm{I}_{\left|\mathrm{v}_{\mathrm{p}}\right|_{p}=1}\left(\mathrm{v}_{\mathrm{p}}\right) \cdot f\left(\mathrm{v}_{\mathrm{r}}\right)$ with $f(t)$ a smooth compactly supported function on R^{\times}, so that we may assume that g has this form. We claim that:

$$
\int_{\mathbf{A}^{\times}}|\varphi(v)| \sum_{q \in \mathbb{Q}^{\times}}|g(q v)| \sqrt{|v|} d^{*} v<\infty
$$

Indeed $\sum_{q \in \mathbf{Q}^{\times}}|g(q v)|=|f(\mid v)|+|f(-\mid v)|$ is bounded above by a multiple of $|v|$. And $\int_{\mathrm{A}^{\times}}|\varphi(\mathrm{v}) \| \mathrm{v}|^{3 / 2} \mathrm{~d}^{*} \mathrm{~V}<\infty$ for each Bruhat-Schwartz function on the adeles (basically, from $\Pi_{p}\left(1-p^{-3 / 2}\right)^{-1}<\infty$). So

$$
\begin{aligned}
& E^{\prime}(g)(\varphi)=\sum_{q \in \mathbb{Q}^{\times}} \int_{A^{\times}} \varphi(v) g(q v) \sqrt{|v|} d^{*} v-\int_{A^{\times}} \frac{g(v)}{\sqrt{|v|}} d^{*} v \int_{A} \varphi(x) d x \\
& E^{\prime}(g)(\varphi)=\sum_{q \in Q^{\times}} \int_{A^{\times}} \varphi(v / q) g(v) \sqrt{|v|} d^{*} v-\int_{A^{\times}} \frac{g(v)}{\sqrt{|v|}} d^{*} v \int_{A} \varphi(x) d x
\end{aligned}
$$

Let us now specialize to $\varphi(\mathrm{a})=\prod_{p} \mathrm{I}_{\mid \mathrm{ap}_{\mathrm{p}} \leq 1}\left(\mathrm{a}_{\mathrm{p}}\right) \cdot \psi\left(\mathrm{a}_{\mathrm{r}}\right)$. Each integral can be evaluated as an infinite product. The finite places contribute 0 or I according to whether $\mathfrak{q} \in Q^{\times}$satisfies $|q|_{p}<1$ or not. So only the inverse integers $q=1 / n$, $n \in Z$, contribute:

$$
E_{R^{\prime}}^{\prime}(g)(\psi)=\sum_{n \in Z^{\times}} \int_{\mathbf{R}^{\times}} \psi(n t) f(t) \sqrt{|t|} \frac{d t}{2|t|}-\int_{R^{\times}} \frac{f(t)}{\sqrt{|t|}} \frac{d t}{2|t|} \int_{R^{\prime}} \psi(x) d x
$$

We can now revert the steps, but this time on R^{\times}and we get:

$$
E_{R}^{\prime}(g)(\psi)=\int_{R^{\times}} \psi(t) \sum_{n \in Z^{\times}} \frac{f(t / n)}{\sqrt{|n|}} \frac{d t}{2 \sqrt{|t|}}-\int_{R^{\times}} \frac{f(t)}{\sqrt{|t|}} \frac{d t}{2|t|} \int_{R} \psi(x) d x
$$

Let us express this in terms of $\alpha(y)=(f(y)+f(-y)) / 2 \sqrt{|y|}$:

$$
E_{R}^{\prime}(g)(\psi)=\int_{R} \psi(y) \sum_{n \geq 1} \frac{\alpha(y / n)}{n} d y-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y \int_{R} \psi(x) d x
$$

So the distribution $E_{R}^{\prime}(\mathrm{g})$ is in fact the even smooth function

$$
E_{R}^{\prime}(g)(y)=\sum_{n \geq 1} \frac{\alpha(y / n)}{n}-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y
$$

As $\alpha(y)$ has compact support in $\mathrm{R} \backslash\{0\}$, the summation over $n \geq 1$ contains only vanishing terms for $|y|$ small enough. So $E_{R}^{\prime}(g)$ is equal to the constant $-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y=-\int_{R^{\times}} \frac{f(y)}{\sqrt{|y|}} \frac{d y}{2|y|}=-\int_{A^{\times}} g(t) / \sqrt{|t|} d^{*} t$ in a neighborhood of 0 . To prove that it is L^{2}, let $\beta(y)$ be the smooth compactly supported function $\alpha(1 / y) / 2|y|$ of $y \in R(\beta(0)=0)$. Then $(y \neq 0)$:

$$
E_{R}^{\prime}(g)(y)=\sum_{n \in Z} \frac{1}{|y|} \beta\left(\frac{n}{y}\right)-\int_{R} \beta(y) d y
$$

From the usual Poisson summation formula, this is also:

$$
\sum_{n \in Z} \gamma(n y)-\int_{R} \beta(y) d y=\sum_{n \neq 0} \gamma(n y)
$$

where $\gamma(y)=\int_{R} \exp (i 2 \pi y w) \beta(w) d w$ is a Schwartz rapidly decreasing function. From this formula we deduce easily that $\mathrm{E}_{\mathrm{R}}^{\prime}(\mathrm{g})(\mathrm{y})$ is itself in the Schwartz class of rapidly decreasing functions, and in particular it is is square-integrable.

It is useful to recapitulate some of the results arising in this proof:
Theorem 2. Let g be a compact Bruhat-Schwartz function on the ideles of Q. The co-Poisson summation $\mathrm{E}_{\mathrm{R}}^{\prime}(\mathrm{g})$ is an even function on R in the Schwartz class of rapidly decreasing functions. It is constant, as well as its Fourier Transform, in a neighborhood of the origin. It may be written as

$$
E_{R}^{\prime}(g)(y)=\sum_{n \geq 1} \frac{\alpha(y / n)}{n}-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y
$$

with a function $\alpha(y)$ smooth with compact support away from the origin, and conversely each such formula corresponds to the co-Poisson summation $\mathrm{E}_{\mathrm{R}}^{\prime}(\mathrm{g})$ of a compact Bruhat-Schwartz function on the ideles of \mathbf{Q}. The Fourier transform $\int_{R} E_{R}^{\prime}(g)(y) \exp (i 2 \pi w y) d y$ corresponds in the formula above to the replacement $\alpha(y) \mapsto \alpha(1 / y) /|y|$.

Everything has been obtained previously.

