This example is set up in ECF Webster (with bold TXfonts). It uses:
txfonts\}\usepackage[upright]\{txgreeks\}\%emeraldpackage\usepackage\{mathastext\}\backslashrenewcommand\{\int\}\{\intop\backslashlimits$\}$\linespread\{1.5\}\begin\{document\}}\backslashmathversion\{bold\}Typesetwithmathastext1.15c(2012/10/05).undefined

To illustrate some Hillbert Space properties of the coPoisson summation, we will assume $K=Q$. The components $\left(a_{v}\right)$ of an adele a are written a_{p} at finite places and a_{r} at the real place. We have an embedding of the Schwartz space of test-functions on R into the Bruhat-Schwartz space on A which sends $\psi(x)$ to $\varphi(a)=\Pi_{p} 1_{\left.\left.\right|_{a_{p}}\right|_{p} \leq 1}\left(a_{p}\right) \cdot \psi\left(a_{x}\right)$, and we write $\mathbb{E}_{\mathrm{R}}^{\prime}(\mathrm{g})$ for the distribution on R thus obtained from $E^{\prime}(g)$ on A.

Theorem 1. Let g be a compact Bruhat-Schwartz function on the ideles of Q. The co-Poisson summation $E_{R}^{\prime}(g)$ is a square-integrable function (with respect to the Lebesgue measure). The $L^{2}(R)$ function $E_{R}^{\prime}(g)$ is equal to the constant $-\int_{A^{x}} g(v)|v|^{-1 / 2} d^{* v}$ in a neighborhood of the origin.

Proof. We may first, without changing anything to $\mathbb{E}_{\mathrm{R}}^{\prime}(\mathrm{g})$, replace g with its average under the action of the finite unit ideles, so that it may be assumed invariant. Any such compact invariant g is a finite linear combination of suitable multiplicative translates of functions of the type $g(v)=\Pi_{p} 1_{\left.\left.\right|_{v_{p}}\right|_{p}=1}\left(v_{p}\right) \cdot f\left(v_{r}\right)$ with $f(t)$ a smooth compactly supported function on R^{\times}, so that we may assume that g has this form. We claim that:

$$
\int_{A x}\left|{ }_{\varphi}(v)\right| \sum_{q \in Q^{x}}|g(q v)| \sqrt{|v|} d^{*} v<\infty
$$

Indeed $\sum_{q \in e^{x}}|g(q v)|=|f(|v|)|+|f(-|v|)|$ is bounded above by a multiple of $|\mathrm{v}|$. And $\left.\left.\int_{\mathrm{A}^{x}}|\varphi(\mathrm{v})|\right|_{\mathrm{v}}\right|^{3 / 2} \mathrm{~d}^{*} \mathrm{v}<\infty$ for each

Bruhat-Schwartz function on the adeles (basically, from $\left.\Pi_{\mathrm{p}}\left(1-\mathrm{p}^{-3 / 2}\right)-1<\infty\right)$. So

$$
\begin{aligned}
& \mathbb{E}^{\prime}(g)(\varphi)=\sum_{q \in Q^{x}} \int_{A^{x}} \varphi(v) g(q v) \sqrt{|v|} d^{*} v-\int_{A^{x}} \frac{g(v)}{\sqrt{|v|}} d^{*} v \int_{A} \varphi(x) d x \\
& \mathbb{E}^{\prime}(g)(\varphi)=\sum_{q \in Q^{x}} \int_{\Delta x} \varphi(v / q) g(v) \sqrt{|v|} d^{*} v-\int_{A^{*}} \frac{g(v)}{\sqrt{|v|}} d^{*} v \int_{A} \varphi(x) d x
\end{aligned}
$$

Let us now specialize to $\varphi\left({ }_{\varphi}\right)=\Pi_{p} 1_{\left.a_{a_{p}}\right|_{\mathrm{sc}}}\left(a_{\mathrm{p}}\right) \cdot \psi\left(a_{\mathrm{r}}\right)$. Each integral can be evaluated as an infinite product. The finite places contribute 0 or 1 according to whether $q \in Q^{\times}$ satisfies $|q|_{p}<1$ or not. So only the inverse integers $q=1 / n, n \in Z$, contribute:
$\mathbb{E}_{R}^{\prime}(g)(\psi)=\sum_{n \in l x} \int_{R x} \psi(n t) f(t) \sqrt{|t|} \frac{d t}{2|t|}-\int_{R x} \frac{f(t)}{\sqrt{|t|}} \frac{d t}{2 t \mid} \int_{R} \psi(x) d x$
We can now revert the steps, but this time on $\mathrm{R} \times$ and we get:

Let us express this in terms of $\alpha(\mathrm{y})=(\mathrm{f}(\mathrm{y})+\mathrm{f}(-\mathrm{y})) / 2 \sqrt{|\mathrm{y}|}$:

$$
\mathbb{E}_{R}^{\prime}(g)(\psi)=\int_{R} \psi(y) \sum_{n \geq 1} \frac{\alpha(y / n)}{n} d y-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y \int_{R} \psi(x) d x
$$

So the distribution $\mathbb{E}_{R}^{(}(g)$ is in fact the even smooth function

$$
\mathbb{E}_{R}(g)(y)=\sum_{n \geq 1} \frac{\alpha(y / n)}{n}-\int_{0}^{\infty} \frac{a(y)}{y} d y
$$

As $\alpha(y)$ has compact support in $R \backslash\{0\}$, the summation over $\mathrm{n} \geq 1$ contains only vanishing terms for $|y|$ small enough. So $E_{R}^{\prime}(g)$ is equal to the constant $-\int_{0}^{\infty} \frac{u(y)}{y} d y=-\int_{R \times} \frac{f(y)}{\sqrt{|y|} \frac{d y}{2 y \mid}}=$ $-\int_{A \times} g(t) / \sqrt{|t|} d^{*} t$ in a neighborhood of 0 . To prove that it is L^{2}, let $\beta(\mathrm{y})$ be the smooth compactly supported function $\alpha(1 / y) / 2|y|$ of $y \in R(\beta(0)=0)$. Then $(y \neq 0)$:

$$
\mathbb{E}_{R}^{\prime}(g)(y)=\sum_{n \in L} \frac{1}{|y|} \beta\left(\frac{n}{y}\right)-\int_{R} \beta(y) d y
$$

From the usual Poisson summation formula, this is also:

$$
\sum_{n \in L} \gamma(n y)-\int_{R} \beta(y) d y=\sum_{n \neq 0} \gamma(n y)
$$

where $\gamma(y)=\int_{R} \exp (i 2 \pi y w) \beta(w) d w$ is a Schwartz rapidly decreasing function. From this formula we deduce easily that $\mathrm{E}_{\mathrm{R}}^{\prime}(\mathrm{g})(\mathrm{y})$ is itself in the Schwartz class of rapidly decreasing functions, and in particular it is is squareintegrable.

It is useful to recapitulate some of the results arising in this proof:

Theorem 2. Let g be a compact Bruhat-Schwartz function on the ideles of Q. The co-Poisson summation $\mathbb{E}_{R}^{\prime}(g)$ is an even function on R in the Schwartz class of rapidly decreasing functions. It is constant, as well as its Fourier Transform, in a neighborhood of the origin. It may be
written as

$$
E_{R}^{\prime}(g)(y)=\sum_{n \geq 1} \frac{\alpha(y / n)}{n}-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y
$$

with a function $\alpha(y)$ smooth with compact support away from the origin, and conversely each such formula corresponds to the co-Poisson summation $E_{R}^{\prime}(g)$ of a compact Bruhat-Schwartz function on the ideles of Q. The Fourier transform $\int_{R} E_{R}^{\prime}(g)(y) \exp (i 2 \pi w y) d y$ corresponds in the formula above to the replacement $\alpha(\mathrm{y}) \mapsto \alpha(1 / \mathrm{y}) /|\mathrm{y}|$.

Everything has been obtained previously.

