This example is set up in ivC\)FTallPaul(withsimbolfont).Ituses:\DeclareFontFamily\{T1\}\{ftp\}\{\}\DeclareFontShape\{T1\}\{ftp\}\{m\}\{n\}\{<->s*[1.4]ftpmw8t\}\{\}\%increasesizebyfactor1.4\)\%emeraldpackage\usepackage[symbol]\{mathastext\}\let\infty\inftypsyTypesetwithmathastext$1.15d$(2012/10/13).undefined

To illustrate some Ailbert Space properties of the co-Poisson summation, we will assume $K=Q$. The components (av) of an adele a are written ap at finite places and ar at the real place. We have an embedding of the Schwartz space of test-functions on R into the Bruhat-Schwartz space on A which sends $\psi(x)$ to $\phi(a)=\left.\Pi_{p}\right|_{\left.a_{p}\right|_{p} \leq 1}\left(a_{p}\right) \cdot \psi\left(a_{r}\right)$, and we write $E_{R}^{\prime}(g)$ for the distribution on R thus obtained from $\Xi^{\prime}(g)$ on A.
Theorem 1 . Let g be a compact Bruhat-Schwartz function on the ideles of Q. The co-Poisson summation $\equiv_{R}^{\prime}(g)$ is a square-integrable function (with respect to the lebesque measure). The $L_{(R)}$ function $\sum_{R}^{\prime}(g)$ is equal to the constant $-\int_{A^{*}} g(v)|v|^{-1 / 2} d^{*} v$ in a neighborhood of the origin.
Proof. We may first, without changing anything to $=_{R}^{\prime}(g)$, replace g with its average under the action of the finite unit ideles, so that it may be assumed invariant. Any such compact invariant g is a finite linear combination of suitable muttiplicative translates of functions of the type $g(v)=\left.\prod_{p}\right|_{\left|v_{p}\right|_{p}}=\left(v_{p}\right) \cdot f\left(v_{r}\right)$ with $f(t)$ a snooth compactly supported function on R^{x}, so that we may assume that g has this form. We claim that:

$$
\int_{A^{x}}|\phi(v)| \sum_{q \in Q^{x}}|g(q)| \sqrt{|v|} d^{*} v<\infty
$$

Indeed $\sum_{q \in Q \times}|g(q v)|=|f(|v|)|+|f(-|v|)|$ is bounded above by a muttiple of $|v|$. And $\left.\int_{A^{x}}|\phi(v)| v\right|^{3 / 2} d^{*} v<\infty$ for each Bruhat-Jchwartz function on the adeles (basically, from $\left.\prod_{p}\left(1-p^{-3 / 2}\right)^{-1}<\infty\right)$. So

$$
\begin{aligned}
& \Xi^{\prime}(g)(\phi)=\sum_{q \in Q^{\times}} \int_{A^{\times}} \phi(v) g(q) \sqrt{|v|} d^{*} v-\int_{A^{\times}} \frac{g(v)}{\sqrt{|v|}} d^{*} v \int_{A} \phi(x) d x \\
& \Xi^{\prime}(g)(\phi)=\sum_{q \in Q^{\times}} \int_{A^{\times}} \phi(v / q) g(v) \sqrt{|v|} d^{*} v-\int_{A^{\times}} \frac{g(v)}{\sqrt{|v|}} d^{*} v \int_{A} \phi(x) d x
\end{aligned}
$$

Let us now specialize to $\phi(a)=\left.\Pi_{p} l_{a_{p}}\right|_{p} \leq\left(a_{p}\right) \cdot \psi\left(a_{r}\right)$. Each integral can be evaluated as an infinite product. The finite places contribute 0 or 1 according to whether $q \in Q^{\times}$satisfles $\mid q l_{p}<1$ or not. So only the inverse integers $9=1 / n, n \in Z$, contribute:

$$
E_{R^{\prime}}^{\prime}(g)(\psi)=\sum_{n \in Z^{x}} \int_{\mathbb{R}^{x}} \psi(n t) f(t) \sqrt{|t|} \frac{d t}{2|t|}-\int_{\mathbb{R}^{x}} \frac{f(t)}{\sqrt{|t|}} \frac{d t}{2|t|} \int_{\mathbb{R}} \psi(x) d x
$$

We can now revert the steps, but this time on R^{x} and we get:

$$
==_{R^{\prime}}^{\prime}(g)(\psi)=\int_{R^{x}} \psi(t) \sum_{n \in Z^{*}} \frac{f(t / n)}{\sqrt{|n|}} \frac{d t}{2 \sqrt{|t|}}-\int_{\mathbb{R}^{x}} \frac{f(t)}{\sqrt{|t|}} \frac{d t}{2|t|} \int_{R^{\prime}} \psi(x) d x
$$

Let us express this in terms of $\alpha(y)=(f(y)+f(-y)) / 2 \sqrt{|y|}$:

$$
\equiv_{R}^{\prime}(g)(\psi)=\int_{R} \psi(y) \sum_{n \geq 1} \frac{\alpha(y / n)}{n} d y-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y \int_{R} \psi(x) d x
$$

So the distribution $\equiv_{R}^{\prime}(g)$ is in fact the even smooth function

$$
\sum_{R}^{\prime}(g)(y)=\sum_{n \geq 1} \frac{\alpha(y / n)}{n}-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y
$$

As $\alpha(y)$ has compact support in $R \backslash\{O\}$, the summation over $n \geq 1$ contains only vanishing terms for lyly small enough. So $\sum_{R}^{\prime}(g)$ is equal to the constant $-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y=-\int_{R^{x}} \frac{f(y)}{\sqrt{|y|}} \frac{d y}{|y|}=-\int_{A^{\prime}} g(t) / \sqrt{|t|} d^{*} t$ in a neighborhood of
0 . To prove that it is L, let $\beta(y)$ be the smooth compactly supported function $\alpha(\mid / y)|2| y \mid$ of $y \in R(\beta(0)=0)$. Then $(y \neq 0)$:

$$
\sum_{R}^{\prime}(g)(y)=\sum_{n \in Z} \frac{1}{|y|} \beta\left(\frac{n}{y}\right)-\int_{R} \beta(y) d y
$$

From the usual Poisson summation formula, this is also:

$$
\sum_{n \in Z} \gamma(n y)-\int_{R} \beta(y) d y=\sum_{n \neq 0} \gamma(n y)
$$

where $\gamma(y)=\int_{R} \exp \left(i Z \pi_{y}\right) \beta(w) d w$ is a $\int c h w a r t z ~ r a p i d l y ~ d e c r e a s i n g ~ f u n c t i o n . ~$ From this formula we deduce easily that $E_{R}^{\prime}(g)(y)$ is itself in the Schwartz class of rapidly decreasing functions, and in particular it is is squareintegrable.

It is useful to recapitulate some of the results arising in this proof:

Theorem 2. Let g be a compact Bruhat-Schwartz function on the ideles of Q. The co-Poisson summation $\Xi_{R}^{\prime}(g)$ is an even function on R in the Schwartz class of rapidly decreasing functions. It is constant, as well as its rourier Transform, in a neighborhood of the origin. It may be written as

$$
\sum_{R}^{\prime}(g)(y)=\sum_{n \geq 1} \frac{\alpha(y / n)}{n}-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y
$$

with a function $\alpha(y)$ smooth with compact support away from the origin, and conversely each such formula corresponds to the co-poisson summation $E_{R}^{\prime}(g)$ of a compact Bruhat-Schwartz function on the ideles of Q. The Fourier transform $\int_{R}=\equiv_{R}^{\prime}(g)(y) \exp (i 2 \pi m, y) d y$ corresponds in the formula above to the replacement $\alpha(y) \mapsto \alpha(\mid / y) / y \mid$.

Everything has been obtained previously.

