This example is set up in ECF Augie (with CM symbols and Euler Greek). It uses:
newcommand$\backslashfamilydefault\{fau\}~\%~emerald~package~$\usepackage[defaultmathsizes,eulergreek]\{mathastext\}TypesetwithmathastextI.15c(2012/10/05).undefined

To illustrate some Hilbert Space properties of the coPoisson summation, we will assume $K=Q$. The components $\left(a_{v}\right)$ of an adele a are written a_{p} at finite places and a_{r} at the real place. We have an embedding of the Schwartz space of test-functions on R into the Bruhat-Schwartz space on A which sends $\psi(x)$ to $\varphi(a)=\left.\prod_{p}\right|_{|a| p \leq 1}\left(a_{p}\right) \cdot \psi\left(a_{r}\right)$, and we write $E_{R}^{\prime}(G)$ for the distribution on R thus OBtained from $E^{\prime}(G)$ on A.

Theorem l. Let G Be a compact Bruhat-Schwartz function on the ideles of Q. The co-Poisson summation $E_{R}^{\prime}(G)$ is a square-integrable function (with respect to the Lebescue measure). The $L^{2}(R)$ function $E_{R}^{\prime}(G)$ is equal to the constant $-\int_{A x} G(V)|V|^{-1 / 2} d^{*} v$ in a neiGhBOrhood of the origin.

Proof. We may first, without changing anything to $E_{R}^{\prime}(G)$, replace G with its average under the action of the finite unit ideles, so that it may be assumed invariant. Any such compact invariant G is a finite linear combination of suitable multiplicative translates of functions of the type $G(v)=\left.\prod_{p}\right|_{\mid v p l_{p}}=\left(v_{p}\right) \cdot f\left(v_{r}\right)$ with $f(t)$ a smooth compactly supported function on R^{\times}, so that we may assume that G has this form. We claim that:

$$
\int_{A^{x}}|\varphi(v)| \sum_{Q \in Q^{\times}}|G(Q v)| \sqrt{|V|} d^{*} v<\infty
$$

Indeed $\sum_{Q \in Q \times}|G(Q V)|=|f(|V|)|+|f(-|V|)|$ is Bounded above By a multiple of $|v|$. And $\int_{A^{x}}|\varphi(v) \| v|^{3 / 2} d^{*} v<\infty$ for each BruhatSchwartz function on the adeles (Basically, from $\prod_{p}\left(1-p^{-3 / 2}\right)^{-1}<$ ∞). So
$E^{\prime}(G)(\varphi)=\sum_{Q \in Q^{x}} \int_{A^{x}} \varphi(v) G(Q v) \sqrt{|V|} d^{*} v-\int_{A^{x}} \frac{G(v)}{\sqrt{|V|}} d^{*} v \int_{A} \varphi(x) d x$
$E^{\prime}(G)(\varphi)=\sum_{Q \in Q^{x}} \int_{A^{x}} \varphi(v / Q) G(v) \sqrt{|V|} d^{*} v-\int_{A^{x}} \frac{G(V)}{\sqrt{|V|}} d^{*} v \int_{A} \varphi(x) d x$
Let us now specialize to $\varphi(a)=\left.\prod_{p}\right|_{|a p| p \leq 1}\left(a_{p}\right) \cdot \psi\left(a_{r}\right)$. Each integral can be evaluated as an infinite product. The finite places contribute O or \mid according to whether $Q \in Q^{\times}$
satisfies $|Q|_{p}<1$ or not. So only the inverse integers $Q=$ $l / n, n \in Z$, contribute:

$$
E_{R}^{\prime}(G)(\psi)=\sum_{n \in Z^{\times}} \int_{R \times} \psi(n t) f(t) \sqrt{|t|} \frac{d t}{2|t|}-\int_{R \times} \frac{f(t)}{\sqrt{|t|}} \frac{d t}{2|t|} \int_{R} \psi(x) d x
$$

We can now revert the steps, but this time on R^{\times}and we Get:

$$
E_{R}^{\prime}(G)(\psi)=\int_{R \times} \psi(t) \sum_{n \in Z \times} \frac{f(t / n)}{\sqrt{|n|}} \frac{d t}{2 \sqrt{|t|}}-\int_{R \times} \frac{f(t)}{\sqrt{|t|}} \frac{d t}{2|t|} \int_{R} \psi(x) d x
$$

Let us express this in terms of $\alpha(y)=(f(y)+f(-y)) / 2 \sqrt{|y|}$:

$$
E_{R}^{\prime}(G)(\psi)=\int_{R} \psi(y) \sum_{n \geq 1} \frac{\alpha(y / n)}{n} d y-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y \int_{R} \psi(x) d x
$$

So the distribution $E_{R}^{\prime}(G)$ is in fact the even smooth function

$$
E_{R}^{\prime}(G)(y)=\sum_{n \geq 1} \frac{\alpha(y / n)}{n}-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y
$$

As $\alpha(y)$ has compact support in $R \backslash\{O\}$, the summation over $n \geq 1$ contains only vanishing terms for $|y|$ small enough. So $E_{R}^{\prime}(G)$ is equal to the constant $-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y=-\int_{R \times} \frac{f(y)}{\sqrt{|y|}} \frac{d y}{| | y \mid}=$ $-\int_{A \times} G(t) / \sqrt{|t|} d^{*} t$ in a neighborhood of O. To prove that it is L^{2}, let $\beta(y)$ be the smooth compactly supported function $\alpha(\mid / y) / 2|y|$ of $y \in R(\beta(O)=O)$. Then $(y \neq O)$:

$$
E_{R}^{\prime}(G)(y)=\sum_{n \in Z} \frac{1}{|y|} \beta\left(\frac{n}{y}\right)-\int_{R} \beta(y) d y
$$

From the usual Poisson summation formula, this is also:

$$
\sum_{n \in Z} \gamma(n y)-\int_{R} \beta(y) d y=\sum_{n \neq 0} \gamma(n y)
$$

where $\gamma(y)=\int_{R} \exp (i 2 \pi y w) \beta(w) d w$ is a Schwartz rapidly decreasing function. From this formula we deduce easily that $E_{R}^{\prime}(G)(y)$ is itself in the Schwartz class of rapidly decreasing functions, and in particular it is is square-integrable.

It is useful to recapitulate some of the results arising in this proof:

Theorem 2. Let G Be a compact Bruhat-Schwartz function on the ideles of Q. The co-Poisson summation $E_{R}^{\prime}(G)$ is an even function on R in the Schwartz class of rapidly decreasing functions. It is constant, as well as its Fourier Transform, in a neighborhood of the origin. It may be written as

$$
E_{R}^{\prime}(G)(y)=\sum_{n \geq 1} \frac{\alpha(y / n)}{n}-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y
$$

with a function $\alpha(y)$ smooth with compact support away from the origin, and conversely each such formula corresponds to the co-Poisson summation $E_{R}^{\prime}(G)$ of a compact Bruhat-Schwartz function on the ideles of Q. The Fourier transform $\int_{R} E_{R}^{\prime}(G)(y) \exp (i 2 \pi w y) d y$ corresponds in the formula above to the replacement $\alpha(y) \mapsto \alpha(\mid / y) /|y|$.

Everything has Been obtained previously.

