This example is set up in ECF {D}\)(withboldTXfonts).Ituses:\usepackage\{txfonts\}\usepackage[upright]\{txgreeks\}\)\%emeraldpackage\usepackage\{mathastext\}\backslashbegin\{document$\}\backslash$mathversion\{bold\}Typesetwithmathastext1.15c(2012/10/05).undefined

To illustrate some Hilbert Space properties of the coPoisson summation, we will assume $K=Q$. The components $\left(A_{v}\right)$ of a_{n} adele A are written A_{p} at finite places and a_{r} at the real place. We have an embedding of the Schwartz space of test-functions on R into the Bruhat-Schwartz space on A which sends $\psi(x)$ to $\varphi(A)=\left.\left.\Pi_{p}\right|_{A_{p}}\right|_{p} \leq 1\left(A_{p}\right)$. $\psi\left(A_{r}\right)$, and we write $E_{R}^{\prime}(g)$ for the distribution on R thus obtained from $E^{\prime}(g)$ on A.
Theorem 1. Let g be a compact Bruhat-Schwartz function on the ideles of Q. The co-poisson summation $E_{R}^{\prime}(g)$ is A square-integrable function (with respect to the Lebesgue measure). The $L^{2}(R)$ function $E_{R}^{\prime}(g)$ is equal to the constint $-\int_{A^{\times}} g(v)|v|^{-1 / 2} d^{*} v$ in a Neighborhood of the origin. Proof. We may first, without changing anything to $E_{R}^{\prime}(g)$, replace g with its average under the action of the finite unit ideles, so that it may be assumed invariant. Any such compact invariant g is a finite linear combination of suitable multiplicative translates of functions of the type $g(v)=\left.\left.\Pi_{p}\right|_{v_{p}}\right|_{p}=1\left(v_{p}\right) \cdot f\left(v_{r}\right)$ with $f(t)$ a smooth compactly supported function on R^{\times}, so that we may assume that g has this form. We claim that:

$$
\int_{A^{x}}|\varphi(v)| \sum_{q \in Q^{x}}|g(q v)| \sqrt{|v|} d^{*} v<\infty
$$

Indeed $\Sigma_{q \in Q} \times \lg (q v)|=|f(|v|)|+|f(-|v|)|$ is bounded above by a multiple of $|v|$. And $\int_{A^{x}}|\varphi(v)||v|^{3 / 2} d^{*} v<\infty$ for each Bruhat-Schwartz function on the addles (basically, from $\left.\Pi_{p}\left(1-p^{-3 / 2}\right)^{-1}<\infty\right)$. So

$$
\begin{aligned}
& E^{\prime}(g)(\varphi)=\sum_{q \in Q^{\times}} \int_{A^{\times}} \varphi(v) g(q v) \sqrt{|v|} d^{*} v-\int_{A^{\times}} \frac{g(v)}{\sqrt{|v|}} d^{*} v \int_{A} \varphi(x) d x \\
& E^{\prime}(g)(\varphi)=\sum_{q \in Q^{\times}} \int_{A^{\times}} \varphi(v / q) g(v) \sqrt{|v|} d^{*} v-\int_{A^{x}} \frac{g(v)}{\sqrt{|v|}} d^{*} v \int_{A} \varphi(x) d x
\end{aligned}
$$

Let us now specialize to $\varphi(A)=\left.\left.\Pi_{P}^{\prime}\right|_{A_{P}}\right|_{p} \leq\left(A_{P}\right) \cdot \psi\left(A_{r}\right)$. Each integral can be evaluated as an infinite product. The finite places contribute 0 or 1 according to whether $q \in Q^{\times}$satisfies $\mid q_{p}<1$ or not. So only the inverse integers $q=1 / n, N \in Z$, contribute:

$$
E_{R}^{\prime}(g)(\psi)=\sum_{N \in Z^{x}} \int_{R^{x}} \psi(N t) f(t) \sqrt{|t|} \frac{d t}{2|t|}-\int_{R^{x}} \frac{f(t)}{\sqrt{|t|}} \frac{d t}{2|t|} \int_{R} \psi(x) d x
$$

We can now revert the steps, but this time on R^{\times}and we get:

$$
E_{R}^{\prime}(g)(\psi)=\int_{R^{x}} \psi(t) \sum_{N \in Z^{x}} \frac{f(t / N)}{\sqrt{|N|}} \frac{d t}{2 \sqrt{|t|}}-\int_{R^{x}} \frac{f(t)}{\sqrt{|t|}} \frac{d t}{2|t|} \int_{R} \psi(x) d x
$$

Let us express this in terms of $\alpha(y)=(f(y)+f(-y)) / 2 \sqrt{|y|}$:

$$
E_{R}^{\prime}(g)(\psi)=\int_{R} \psi(y) \sum_{N \geq 1} \frac{\alpha(y / N)}{N} d y-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y \int_{R} \psi(x) d x
$$

So the distribution $E_{R}^{\prime}(g)$ is in fact the even smooth function

$$
E_{R}^{\prime}(g)(y)=\sum_{N \geq 1} \frac{\alpha(y / N)}{N}-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y
$$

As $\alpha(y)$ has compact support in $R \backslash\{O\}$, the summation over $N \geq 1$ contains only vanishing terms for $|y|$ small enough. So $E_{R}^{\prime}(g)$ is equal to the constant $-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y=$ $-\int_{R^{\times}} \frac{f(y)}{\sqrt{|y|}} \frac{d y}{2|y|}=-\int_{A^{\times}}(t) / \sqrt{|t|} d^{*} t$ in a Neighborhood of 0 .
To prove that it is L^{2}, let $\beta(y)$ be the smooth compactly supported function $\alpha(1 / y) / 2|y|$ of $y \in R(\beta(0)=0)$. Then $(y \neq 0)$:

$$
E_{R}^{\prime}(g)(y)=\sum_{N \in Z} \frac{1}{|y|} \beta\left(\frac{N}{y}\right)-\int_{R} \beta(y) d y
$$

From the usual Poisson summation formula, this is also:

$$
\sum_{N \in Z} \gamma(N y)-\int_{R} \beta(y) d y=\sum_{N \neq 0} \gamma(N y)
$$

where $\gamma(y)=\int_{R} \exp (i 2 \pi y \omega) \beta(\omega) d \omega$ is a Schwartz rapidly decreasing function. From this formula we deduce easily that $E_{R}^{\prime}(g)(y)$ is itself in the Schwartz class of rapidly decreasing functions, and in particular it is is squareintegrable.

It is useful to recapitulate some of the results arising in this proof:

Theorem 2. Let g be a compact Bruhat-Schwartz function on the ideles of Q. The co-Poisson summation $E_{R}^{\prime}(g)$ is an even function on R in the Schwartz class of rapidly decreasing functions. It is constant, as well as its Fourier Transform, in a neighborhood of the origin. It may be written as

$$
E_{R}^{\prime}(g)(y)=\sum_{N \geq 1} \frac{\alpha(y / N)}{N}-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y
$$

with a function $\alpha(y)$ smooth with compact support away from the origin, and conversely each such formula corresponds to the co-Poisson summation $E_{R}^{\prime}(g)$ of A compact Bruhat-Schwartz function on the ideles of Q. The Fourier transform $\int_{R} E_{R}^{\prime}(g)(y) \exp (i 2 \pi \omega y) d y$ corresponds in the formula above to the replacement $\alpha(y) \mapsto \alpha(1 / y) /|y|$.

Everything has been obtained previously.

