This example is set up in Electrum EDF (with CM Greek in upright shape). It uses:
{fontenc\}\usepackage[LGRgreek,basic,defaultmathsizes]\{mathastext\}\usepackage[lf]\{electrum\}\Mathastext$\backslashlet\backslashvarphi\backslashphi$Typesetwithmathastext1.15b[2012/09/27].undefined

To illustrate some Hilbert Space properties of the co-Poisson summation, we will assume $\mathrm{K}=母$. The components $\left(\mathrm{a}_{v}\right)$ of an adele a are written a_{p} at finite places and a_{r} at the real place. We have an embedding of the Schwartz space of test-functions on A into the Bruhat-Schwartz space on A which sends $\psi(\mathrm{x})$ to $\varphi(\mathrm{a})=\prod_{\mathrm{p}} 1_{\left|\mathrm{a}_{\mathrm{p}}\right|_{\mathrm{p}} \leq 1}\left(\mathrm{a}_{\mathrm{p}}\right) \cdot \psi\left(\mathrm{a}_{\mathrm{r}}\right)$, and we write $\mathrm{E}_{\mathrm{H}}^{\prime}(\mathrm{g})$ for the distribution on H thus obtained from $\mathrm{E}^{\prime}(\mathrm{g})$ on A .

Theorem 1. Let g be a compact Bruhat-Schwartz function on the ideles of \downarrow. The co-Poisson summation $\mathrm{E}_{\mathrm{H}}^{\prime}(\mathrm{g})$ is a square-integrable function (with respect to the Lebesgue measure]. The $\mathrm{L}^{2}(\mathrm{H})$ function $\mathrm{E}_{\mathrm{H}}^{\prime}(\mathrm{g})$ is equal to the constant $-\int_{\mathrm{A}^{\times}} \mathrm{g}(\mathrm{v})|\mathrm{v}|^{-1 / 2} \mathrm{~d}^{*} \mathrm{v}$ in a neighborhood of the arigin.

Proof. We may first, without changing anything to $\mathrm{E}_{\mathrm{h}}^{\prime}(\mathrm{g})$, гeplace g with its average under the action of the finite unit ideles, so that it may be assumed invariant. Any such compact invariant g is a finite linear combination of suitable multiplicative translates of functions of the type $g(v)=\prod_{p} 1_{\left|v_{p}\right|_{p}=1}\left(v_{p}\right) \cdot f\left(v_{r}\right)$ with $f(t)$ a smooth compactly supported function on H^{\times}, so that we may assume that g has this form. We claim that:

$$
\int_{\mathrm{A}^{\times}}|\varphi(\mathrm{v})| \sum_{\mathrm{q} \in \mathrm{Q}^{\times}}|\mathrm{g}(\mathrm{qv})| \sqrt{|\mathrm{v}|} \mathrm{d}^{*} \mathrm{v}<\infty
$$

Indeed $\sum_{q \in \square \times}|g(q v)|=|f(|v|)|+|f(-|v|)|$ is bounded above by a multiple of $|\mathrm{v}|$. And $\int_{\mathrm{A}^{x}}|\varphi(\mathrm{v})||\mathrm{v}|^{3 / 2} \mathrm{~d}^{*} \mathrm{v}<\infty$ for each Вruhat-Schwartz function on the adeles (basically, from $\prod_{p}\left(1-p^{-3 / 2}\right)^{-1}<\infty$). So

$$
\begin{aligned}
& E^{\prime}(g)(\varphi)=\sum_{q \in \square^{\times}} \int_{A^{\times}} \varphi(v) g(q v) \sqrt{|v|} d^{*} v-\int_{A^{\times}} \frac{g(v)}{\sqrt{|v|}} d^{*} v \int_{A} \varphi(x) d x \\
& E^{\prime}(g)(\varphi)=\sum_{q \in \square^{\times}} \int_{A^{\times}} \varphi(v / q) g(v) \sqrt{|v|} d^{*} v-\int_{A^{\times}} \frac{g(v)}{\sqrt{|v|}} d^{*} v \int_{A} \varphi(x) d x
\end{aligned}
$$

Let us now specialize to $\varphi(a)=\prod_{p} 1_{\mid a p p_{p}^{p} \leq 1}\left(a_{p}\right) \cdot \psi\left(a_{r}\right)$. Each integral can be evaluated as an infinite product. The finite places contribute O ог 1 according to whether $q \in \boldsymbol{Q}^{\times}$satisfies $|q|_{p}<1$ ог not. So only the inverse integers $q=1 / n, ~ п \in Z$, contribute:

$$
E_{\mathrm{H}}^{\prime}(\mathrm{g})(\psi)=\sum_{\mathrm{n} \in \mathrm{Z}^{\times}} \int_{\mathrm{H}^{\times}} \psi(n t) \mathrm{f}(\mathrm{t}) \sqrt{|t|} \frac{\mathrm{dt}}{2|t|}-\int_{\mathrm{H}_{\times} \times} \frac{\mathrm{f}(\mathrm{t})}{\sqrt{|\mathrm{t}|}} \frac{\mathrm{dt}}{2|t|} \int_{\mathrm{H}} \psi(x) d x
$$

We can now revert the steps, but this time on H^{\times}and we get:

$$
\mathrm{E}_{\mathrm{H}}^{\prime}(\mathrm{g})(\psi)=\int_{\mathrm{A}^{\times}} \psi(\mathrm{t}) \sum_{\mathrm{n} \in \mathrm{Z} \times} \frac{\mathrm{f}(\mathrm{t} / \mathrm{n})}{\sqrt{|n|}} \frac{\mathrm{dt}}{2 \sqrt{|\mathrm{t}|}}-\int_{\mathrm{B}^{\times} \times} \frac{\mathrm{f}(\mathrm{t})}{\sqrt{|\mathrm{t}|}} \frac{\mathrm{dt}}{2|t|} \int_{\mathrm{H}} \psi(\mathrm{x}) \mathrm{dx}
$$

Let us express this in terms of $\alpha(\mathrm{y})=(\mathrm{f}(\mathrm{y})+\mathrm{f}(-\mathrm{y})) / 2 \sqrt{|\mathrm{y}|}$:

$$
E_{\mathrm{H}}^{\prime}(\mathrm{g})(\psi)=\int_{\mathrm{H}} \psi(\mathrm{y}) \sum_{\mathrm{n} \geq 1} \frac{\alpha(\mathrm{y} / \mathrm{n})}{\mathrm{n}} d y-\int_{0}^{\infty} \frac{\alpha(\mathrm{y})}{\mathrm{y}} d y \int_{\mathrm{H}} \psi(x) d x
$$

So the distribution $E_{\mathrm{H}}^{\prime}(\mathrm{g})$ is in fact the even smooth function

$$
E_{\mathrm{H}}^{\prime}(\mathrm{g})(\mathrm{y})=\sum_{\mathrm{n} \geq 1} \frac{\alpha(\mathrm{y} / \mathrm{n})}{\mathrm{n}}-\int_{0}^{\infty} \frac{\alpha(\mathrm{y})}{\mathrm{y}} \mathrm{dy}
$$

As $\alpha(y)$ has compact support in $\mathrm{R} \backslash\{0\}$, the summation over $n \geq 1$ contains only vanishing terms for $|y|$ small enough. So $\mathrm{E}_{\mathrm{H}}^{\prime}(\mathrm{g})$ is equal to the constant $-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y=-\int_{\mathrm{H}^{\times}} \frac{f(y)}{\sqrt{|y|}} \frac{d y}{|y|}=-\int_{A^{\times}} \mathrm{g}(\mathrm{t}) / \sqrt{|t|} \mathrm{d}^{*} \mathrm{t}$ in a neighborhood of 0 . To prove that it is L^{2}, let $\beta(\mathrm{y})$ be the smooth compactly supported function $\alpha(1 / y) / 2|y|$ of $y \in \mathrm{R}[\beta(\mathrm{D})=\mathrm{D}]$. Then [$y \neq 0$]:

$$
E_{\mathrm{H}}^{\prime}(\mathrm{g})(\mathrm{y})=\sum_{\mathrm{n} \in \mathrm{Z}} \frac{1}{|y|} \beta\left(\frac{n}{y}\right)-\int_{\mathrm{H}} \beta(\mathrm{y}) d y
$$

From the usual Poisson summation formula, this is also:

$$
\sum_{n \in Z} \gamma(n y)-\int_{H} \beta(y) d y=\sum_{n \neq 0} \gamma(n y)
$$

where $\gamma(y)=\int_{\mathrm{H}} \exp (\mathrm{i} 2 \pi y w) \beta(\mathrm{w}) \mathrm{dw}$ is a Schwartz гарidly decгеазing function. From this formula we deduce easily that $\mathrm{E}_{\mathrm{H}}^{\prime}(\mathrm{g})(\mathrm{y})$ is itself in the Schwartz class of rapidly decreasing functions, and in particular it is is square-integrable.

It is useful to recapitulate some of the results arising in this proof:

Theorem 2. Let g be a compact Bruhat-Schwartz function on the ideles of \downarrow. The co-Poisson summation $\mathrm{E}_{\mathrm{R}}^{\prime}(\mathrm{g})$ is an even function on A in the Schwartz class of rapidly decreasing functions. It is
constant, as well as its Fourier Transform, in a neighborhood of the огіgin. It may be written as

$$
E_{R}^{\prime}(g)(y)=\sum_{n \geq 1} \frac{\alpha(y / n)}{n}-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y
$$

with a function $\alpha(\mathrm{y})$ smooth with compact support away from the origin, and conversely each such formula corгesponds to the coPoisson summation $\mathrm{E}_{\mathrm{H}}^{\prime}(\mathrm{g})$ of a compact Bruhat-Schwartz function on the ideles of \downarrow. The Fourier transform $\int_{\mathrm{H}} \mathrm{E}_{\mathrm{H}}^{\prime}(\mathrm{g})(\mathrm{y}) \exp (\mathrm{i} 2 \pi \mathrm{wy})$ dy согresponds in the formula above to the replacement $\alpha(\mathrm{y}) \mapsto \alpha(1 / \mathrm{y}) /|\mathrm{y}|$.

Everything has been obtained previously.

