This example is set up in Droid Sans. It uses:
e[T1]\{fontenc\}\usepackage[default]\{droidsans\}\usepackage[LGRgreek,defaultmathsizes,italic]\{mathastext\}\let\varphi\phiTypesetwithmathastext1.13(2011/03/11).undefined

To illustrate some Hilbert Space properties of the co-Poisson summation, we will assume $K=\mathbf{Q}$. The components $\left(a_{v}\right)$ of an adele a are written a_{p} at finite places and a_{r} at the real place. We have an embedding of the Schwartz space of test-functions on \mathbf{R} into the Bruhat-Schwartz space on A which sends $\psi(x)$ to $\varphi(a)=$ $\prod_{p} \mathbf{1}_{\left|a_{p}\right|_{p} \leq 1}\left(a_{p}\right) \cdot \psi\left(a_{r}\right)$, and we write $E_{\mathbf{R}}^{\prime}(g)$ for the distribution on \mathbf{R} thus obtained from $E^{\prime}(g)$ on \mathbf{A}.

Theorem 1. Let g be a compact Bruhat-Schwartz function on the ideles of \mathbf{Q}. The co-Poisson summation $E_{\mathbf{R}}^{\prime}(g)$ is a square-integrable function (with respect to the Lebesgue measure). The $L^{2}(\mathbf{R})$ function $E_{R^{\prime}}^{\prime}(g)$ is equal to the constant $-\int_{\mathbf{A}^{\times}} g(v)|v|^{-1 / 2} d^{*} v$ in a neighborhood of the origin.

Proof. We may first, without changing anything to $E_{\mathrm{R}}^{\prime}(g)$, replace g with its average under the action of the finite unit ideles, so that it may be assumed invariant. Any such compact invariant g is a finite linear combination of suitable multiplicative translates of functions of the type $g(v)=\prod_{p} \mathbf{1}_{\left|v_{p}\right|_{p=1}}\left(v_{p}\right) \cdot f\left(v_{r}\right)$ with $f(t)$ a smooth compactly supported function on \mathbf{R}^{\times}, so that we may assume that g has this form. We claim that:

$$
\int_{\mathbf{A}^{\times}}|\varphi(v)| \sum_{q \in \mathbf{Q}^{\times}}|g(q v)| \sqrt{|v|} d^{\star} v<\infty
$$

Indeed $\sum_{q \in \mathbf{Q}^{\times}}|g(q v)|=|f(|v|)|+|f(-|v|)|$ is bounded above by a multiple of $|v|$. And $\int_{\mathbf{A}^{\times}}|\varphi(v)||v|^{3 / 2} d^{*} v<\infty$ for each BruhatSchwartz function on the adeles (basically, from $\prod_{p}\left(1-p^{-3 / 2}\right)^{-1}<$ $\infty)$. So

$$
\begin{aligned}
& E^{\prime}(g)(\varphi)=\sum_{q \in \mathbf{Q}^{\times}} \int_{\mathbf{A}^{\times}} \varphi(v) g(q v) \sqrt{|V|} d^{*} v-\int_{\mathbf{A}^{\times}} \frac{g(v)}{\sqrt{|V|}} d^{*} v \int_{\mathbf{A}} \varphi(x) d x \\
& E^{\prime}(g)(\varphi)=\sum_{q \in \mathbf{Q}^{\times}} \int_{\mathbf{A}^{\times}} \varphi(v / q) g(v) \sqrt{|v|} d^{\star} v-\int_{\mathbf{A}^{\times}} \frac{g(v)}{\sqrt{|v|}} d^{*} v \int_{\mathbf{A}} \varphi(x) d x
\end{aligned}
$$

Let us now specialize to $\varphi(a)=\prod_{p} \mathbf{1}_{\left|a_{p}\right|_{p} \leq 1}\left(a_{p}\right) \cdot \psi\left(a_{r}\right)$. Each integral can be evaluated as an infinite product. The finite places contribute 0 or 1 according to whether $q \in \mathbf{Q}^{\times}$satisfies $|q|_{p}<1$ or not. So only the inverse integers $q=1 / n, n \in \mathbf{Z}$, contribute:

$$
E_{\mathbf{R}}^{\prime}(g)(\psi)=\sum_{n \in \mathbf{Z}^{\times}} \int_{\mathbf{R}^{\times}} \psi(n t) f(t) \sqrt{|t|} \frac{d t}{2|t|}-\int_{\mathbf{R}^{\times}} \frac{f(t)}{\sqrt{|t|}} \frac{d t}{2|t|} \int_{\mathbf{R}} \psi(x) d x
$$

We can now revert the steps, but this time on \mathbf{R}^{\times}and we get:

$$
E_{\mathbf{R}}^{\prime}(g)(\psi)=\int_{\mathbf{R}^{\times}} \psi(t) \sum_{n \in \mathbf{Z}^{\times}} \frac{f(t / n)}{\sqrt{|n|}} \frac{d t}{2 \sqrt{|t|}}-\int_{\mathbf{R}^{\times}} \frac{f(t)}{\sqrt{|t|}} \frac{d t}{2|t|} \int_{\mathbf{R}} \psi(x) d x
$$

Let us express this in terms of $a(y)=(f(y)+f(-y)) / 2 \sqrt{|y|}$:

$$
E_{\mathbf{R}}^{\prime}(g)(\psi)=\int_{\mathbf{R}} \psi(y) \sum_{n \geq 1} \frac{a(y / n)}{n} d y-\int_{0}^{\infty} \frac{a(y)}{y} d y \int_{\mathbf{R}} \psi(x) d x
$$

So the distribution $E_{\mathbf{R}}^{\prime}(g)$ is in fact the even smooth function

$$
E_{\mathrm{R}}^{\prime}(g)(y)=\sum_{n \geq 1} \frac{a(y / n)}{n}-\int_{0}^{\infty} \frac{a(y)}{y} d y
$$

As $a(y)$ has compact support in $\mathbf{R} \backslash\{0\}$, the summation over $n \geq 1$ contains only vanishing terms for $|y|$ small enough. So $E_{R}^{\prime}(g)$ is equal to the constant $-\int_{0}^{\infty} \frac{a(y)}{y} d y=-\int_{\mathbf{R}^{\times}} \frac{f(y)}{\sqrt{|y|}} \frac{d y}{2|y|}=-\int_{\mathbf{A}^{\times}} g(t) / \sqrt{|t|} d^{*} t$ in a neighborhood of 0 . To prove that it is L^{2}, let $\beta(y)$ be the smooth compactly supported function $\alpha(1 / y) / 2|y|$ of $y \in \mathbf{R}(\beta(0)=0)$. Then ($y=0$):

$$
E_{\mathbf{R}}^{\prime}(g)(y)=\sum_{n \in \mathbf{Z}} \frac{1}{|y|} \beta\left(\frac{n}{y}\right)-\int_{\mathbf{R}} \beta(y) d y
$$

From the usual Poisson summation formula, this is also:

$$
\sum_{n \in \mathbf{Z}} y(n y)-\int_{\mathbf{R}} \beta(y) d y=\sum_{n=0} y(n y)
$$

where $y(y)=\int_{\mathbf{R}} \exp (i 2 \pi y w) \beta(w) d w$ is a Schwartz rapidly decreasing function. From this formula we deduce easily that $E_{\mathbf{R}}^{\prime}(g)(y)$ is itself in the Schwartz class of rapidly decreasing functions, and in particular it is is square-integrable.

It is useful to recapitulate some of the results arising in this proof:

Theorem 2. Let g be a compact Bruhat-Schwartz function on the ideles of \mathbf{Q}. The co-Poisson summation $E_{\mathbf{R}}^{\prime}(g)$ is an even function on \mathbf{R} in the Schwartz class of rapidly decreasing functions. It is
constant, as well as its Fourier Transform, in a neighborhood of the origin. It may be written as

$$
E_{\mathrm{R}}^{\prime}(g)(y)=\sum_{n \geq 1} \frac{a(y / n)}{n}-\int_{0}^{\infty} \frac{a(y)}{y} d y
$$

with a function $\alpha(y)$ smooth with compact support away from the origin, and conversely each such formula corresponds to the coPoisson summation $E_{R}^{\prime}(g)$ of a compact Bruhat-Schwartz function on the ideles of \mathbf{Q}. The Fourier transform $\int_{\mathbf{R}} E_{\mathbf{R}}^{\prime}(g)(y) \exp (i 2 \pi w y) d y$ corresponds in the formula above to the replacement $a(y) \mapsto a(1 / y) /|y|$.

Everything has been obtained previously.

