This example is set up in BrushScriptX-Italic. It uses:

\usepackage[T1]{fontenc}
%\usepackage{pbsi}
\renewcommand{\rmdefault}{pbsi}
\renewcommand{\mddefault}{x1}
\renewcommand{\bfdefault}{x1}
\usepackage[defaultmathsizes,noasterisk]{mathastext}
\begin{document}\boldmath

7ypeset with mathastext 1.13 (2011/03/11).

To illustrate some Hilbert Space properties of the co-Poisson summation, we will assume K=2. The components (a_{ν}) of an adele a are written a_{μ} at finite places and a_{r} at the real place. We have an embedding of the Schwartz space of test-functions on R into the Bruhat-Schwartz space on A which sends $\psi(x)$ to $\varphi(a)=\prod_{\mu}1_{|a_{\mu}|_{\mu}\leq 1}(a_{\mu})\cdot\psi(a_{r})$, and we write $E'_{R}(q)$ for the distribution on R thus obtained from E'(q) on A.

Theorem 1. Let g be a compact Bruhat-Schwartz function on the ideles of 2. The co-Poisson summation $E'_{\mathcal{R}}(g)$ is a square-integrable function (with respect to the Lebesgue measure). The $\mathcal{L}^2(\mathcal{R})$ function $E'_{\mathcal{R}}(g)$ is equal to the constant $-\int_{\mathcal{A}^\times} g(u)|u|^{-1/2}d^*u$ in a neighborhood of the origin.

Proof. We may first, without changing anything to $E'_{\mathcal{R}}(q)$, replace q with its average under the action of the finite unit ideles, so that it may be assumed invariant. Any such compact invariant q is a finite linear combination of suitable multiplicative translates of functions of the type $q(v) = \prod_{\mu} 1_{|u_{\mu}|_{\mu}=1}(u_{\mu}) \cdot f(v_{\tau})$ with f(t) a smooth compactly supported function on \mathbb{R}^{\times} , so that we may assume that q has this form. We claim that:

$$\int_{\mathcal{A}^{\times}} |\varphi(u)| \sum_{g \in \mathcal{Z}^{\times}} |g(gu)| \sqrt{|u|} d^*u < \infty$$

Indeed $\sum_{g\in 2^{\times}} |g(gu)| = |f(|u|)| + |f(-|u|)|$ is bounded above by a multiple of |u|. And $\int_{\mathcal{A}^{\times}} |\varphi(u)| |u|^{3/2} d^*u < \infty$ for each Bruhat-Schwartz function on the adeles (basically, from $\prod_{p} (1-p^{-3/2})^{-1} < \infty$). So

$$\mathcal{E}'(q)(\varphi) = \sum_{q \in \mathcal{Q}^{\times}} \int_{\mathcal{A}^{\times}} \varphi(u) q(qu) \sqrt{|u|} d^{*}u - \int_{\mathcal{A}^{\times}} \frac{q(u)}{\sqrt{|u|}} d^{*}u \int_{\mathcal{A}} \varphi(x) dx$$

$$\mathcal{E}'(g)(\varphi) = \sum_{g \in \mathcal{Q}^{\times}} \int_{\mathcal{A}^{\times}} \varphi(u/g)g(u)\sqrt{|u|} d^{*}u - \int_{\mathcal{A}^{\times}} \frac{g(u)}{\sqrt{|u|}} d^{*}u \int_{\mathcal{A}} \varphi(x) dx$$

Let us now specialize to $\varphi(a) = \prod_{k} 1_{|a_k|_k \le 1}(a_k) \cdot \psi(a_r)$. Each integral can be evaluated as an infinite product. The finite places

contribute 0 or 1 according to whether $q \in 2^{\times}$ satisfies $|q|_{\mu} < 1$ or not. So only the inverse integers q = 1/n, $n \in 3$, contribute:

$$\mathcal{E}_{\mathcal{R}}'(q)(\psi) = \sum_{u \in \mathcal{Z}^{\times}} \int_{\mathcal{R}^{\times}} \psi(ut) f(t) \sqrt{|t|} \frac{dt}{2|t|} - \int_{\mathcal{R}^{\times}} \frac{f(t)}{\sqrt{|t|}} \frac{dt}{2|t|} \int_{\mathcal{R}} \psi(x) dx$$

We can now revert the steps, but this time on \mathbb{R}^{\times} and we get:

$$\mathcal{E}_{\mathcal{R}}'(g)(\psi) = \int_{\mathcal{R}^{\times}} \psi(t) \sum_{u \in \mathcal{S}^{\times}} \frac{f(t/u)}{\sqrt{|u|}} \frac{dt}{2\sqrt{|t|}} - \int_{\mathcal{R}^{\times}} \frac{f(t)}{\sqrt{|t|}} \frac{dt}{2|t|} \int_{\mathcal{R}} \psi(x) dx$$

Let us express this in terms of $\alpha(q) = (f(q) + f(-q))/2\sqrt{|q|}$:

$$\mathcal{E}'_{\mathcal{R}}(q)(\psi) = \int_{\mathcal{R}} \psi(q) \sum_{\alpha > 1} \frac{\alpha(q/\alpha)}{\alpha} dq - \int_{0}^{\infty} \frac{\alpha(q)}{q} dq \int_{\mathcal{R}} \psi(x) dx$$

So the distribution $\mathcal{E}'_{\mathcal{R}}(q)$ is in fact the even smooth function

$$\mathcal{E}'_{\mathcal{R}}(q)(q) = \sum_{n>1} \frac{\alpha(q/n)}{n} - \int_0^\infty \frac{\alpha(q)}{q} dq$$

As $\alpha(q)$ has compact support in $\mathbb{R}\setminus\{0\}$, the summation over $n\geq 1$ contains only vanishing terms for |q| small enough. So $E'_{\mathcal{R}}(q)$ is equal to the constant $-\int_0^\infty \frac{\alpha(q)}{q} dq = -\int_{\mathbb{R}^\times} \frac{f(q)}{\sqrt{|q|}} \frac{dq}{2|q|} = -\int_{\mathbb{R}^\times} g(t)/\sqrt{|t|} d^*t$ in a neighborhood of 0. To prove that it is \mathcal{L}^2 , let $\beta(q)$ be the smooth compactly supported function $\alpha(1/q)/2|q|$ of $q\in \mathbb{R}$ $(\beta(0)=0)$. Then $(q\neq 0)$:

$$\mathcal{E}'_{\mathcal{R}}(q)(q) = \sum_{n \in \mathcal{R}} \frac{1}{|q|} \beta(\frac{n}{q}) - \int_{\mathcal{R}} \beta(q) dq$$

From the usual Poisson summation formula, this is also:

$$\sum_{n \in \mathcal{Z}} \gamma(nq) - \int_{\mathcal{R}} \beta(q) dq = \sum_{n \neq 0} \gamma(nq)$$

where $\gamma(q) = \int_{\mathcal{R}} \exp(i 2\pi q w) \beta(w) dw$ is a Schwartz rapidly decreasing function. From this formula we deduce easily that $E'_{\mathcal{R}}(q)(q)$ is itself in the Schwartz class of rapidly decreasing functions, and in particular it is is square-integrable.

It is useful to recapitulate some of the results arising in this proof:

Theorem 2. Let g be a compact Bruhat-Schwartz function on the ideles of 2. The co-Poisson summation $E'_{\mathcal{R}}(g)$ is an even function on \mathcal{R} in the Schwartz class of rapidly decreasing functions. It is constant, as well as its Fourier Transform, in a neighborhood of the origin. It may be written as

$$\mathcal{E}'_{\mathcal{R}}(q)(q) = \sum_{n>1} \frac{\alpha(q/n)}{n} - \int_0^\infty \frac{\alpha(q)}{q} dq$$

with a function $\alpha(q)$ smooth with compact support away from the origin, and conversely each such formula corresponds to the co-Poisson summation $E'_{\mathcal{R}}(q)$ of a compact Bruhat-Schwartz function on the ideles of 2. The Fourier transform $\int_{\mathcal{R}} E'_{\mathcal{R}}(q)(q) \exp(i2\pi w q) dq$ corresponds in the formula above to the replacement $\alpha(q) \mapsto \alpha(1/q)/|q|$.

Everything has been obtained previously.