This example is set up in BrushScriptX-Otalic. It uses:

\usepackage[T1]\{fontenc\}
\%\usepackage\{pbsi\}
$\backslashrenewcommand\{\backslashrmdefault\}\{pbsi\}$
\backslashrenewcommand$\{\backslash$mddefault$\}\{xl\}$
\{xl\}
\usepackage[defaultmathsizes,noasterisk]\{mathastext\}
\begin\{document\}\boldmathundefined

}

Typeset with mathastext 1.13 (2011/03/11).

To illustrate same Hilbert Space properties of the ca-Paissan summation, we will assume $K=2$. The components (a_{ν}) of an adele a are ceritten a_{p} at finite places and a_{r} at the real place. We have an embedding of the Schcuartz space of test-functions on R inta the Bruhat-Schwartz space on A which sends $\psi(x)$ ta $\varphi(a)=\prod_{p} l_{\left|a_{k}\right|_{p} \leq 1}\left(a_{p}\right) \cdot \psi\left(a_{n}\right)$, and we curite $\mathcal{E}_{R}^{\prime}(g)$ for the distribution an R thus abtained from $\mathcal{E}^{\prime}(g)$ an \mathcal{A}.
Thearem 1. Let g be a compact Bruhat-Schwarts function on the ideles of 2. The ca-Paisson summation $\mathcal{E}_{R}^{\prime}(\mathrm{g})$ is a squareintegrable function (with respect to the Lebesgue measure). The $\mathcal{L}^{2}(R)$ function $E_{R}^{\prime}(g)$ is equal to the constant $-\int_{\boldsymbol{A}} \times g(u)|u|^{-1 / 2} d^{*} u$ in a neighborhood of the arigin.
Proof. We may first, without changing anything to $\varepsilon_{R}^{\prime}(g)$, neplace g with its auerage under the action of the finite unit ideles. sa that it may be assumed inuariant. Any such compact innariant g is a finite linear combination of suitable multiplicative translates of functions of the type $g(u)=\prod_{p} 1_{\left|\omega_{p}\right|_{p}=1}\left(u_{p}\right) \cdot f\left(u_{n}\right)$ with $f(t)$ a smooth compactly supparted function an R^{\times}, so that we may assume that g has this form. We claim that:

$$
\int_{\mathscr{A} \times}|\varphi(u)| \sum_{g \in 2^{\times}}|g(g u)| \sqrt{|u|} d^{*} u<\infty
$$

Indeed $\sum_{g \in 2 \times}|g(g u)|=|f(|u|)|+|f(-|u|)|$ is bounded aboue by a multiple of $|u|$. And $\int_{A \times}|\varphi(u)||u|^{3 / 2} d^{*} u<\infty$ for each Bruhat-Schwarts function an the adeles (basically, from $\prod_{p}(1-$ $\left.\left.p^{-3 / 2}\right)^{-1}<\infty\right)$. Sa

$$
\begin{aligned}
& \varepsilon^{\prime}(g)(\varphi)=\sum_{g \in 2^{\times}} \int_{\mathscr{A} \times} \varphi(u) g(g u) \sqrt{|u|} d^{*} u-\int_{\mathscr{A} \times} \frac{g(u)}{\sqrt{|u|}} d^{*} u \int_{\mathscr{A}} \varphi(x) d x \\
& \varepsilon^{\prime}(g)(\varphi)=\sum_{g \in 2^{\times}} \int_{\mathscr{A} \times} \varphi(u / g) g(u) \sqrt{|u|} d^{*} u-\int_{\mathscr{A} \times} \frac{g(u)}{\sqrt{|u|}} d^{*} u \int_{\mathscr{A}} \varphi(x) d x
\end{aligned}
$$

Let us nocu specialize to $\varphi(a)=\prod_{p} 1_{\left|a_{p}\right|_{p} \leq 1}\left(a_{p}\right) \cdot \psi\left(a_{n}\right)$. Each integral can be eualuated as an infinite praduct. The fincite places
contribute 0 ar 1 according to whether $g \in 2^{\times}$satisfies $|g|_{k}<1$ ar not. Sa anly the inverse integers $g=1 / n, n \in \mathcal{Z}$, cantribute:

$$
\varepsilon_{R}^{\prime}(g)(\psi)=\sum_{n \in Z^{\times}} \int_{\mathbb{R} \times} \psi(u t) f(t) \sqrt{|t|} \frac{d t}{2|t|}-\int_{\mathbb{R} \times} \frac{f(t)}{\sqrt{|t|}} \frac{d t}{2|t|} \int_{\mathcal{R}} \psi(x) d x
$$

We can now rewert the steps, but this time an R^{\times}and we get:

$$
\varepsilon_{R}^{\prime}(g)(\psi)=\int_{\mathcal{R} \times} \psi(t) \sum_{n \in Z^{\times}} \frac{f(t / n)}{\sqrt{|u|}} \frac{d t}{2 \sqrt{|t|}}-\int_{\mathcal{R} \times} \frac{f(t)}{\sqrt{|t|}} \frac{d t}{2|t|} \int_{\mathcal{R}} \psi(x) d x
$$

Let us express this in terms of $\alpha(y)=(f(y)+f(-y)) / 2 \sqrt{|y|}$:

$$
\varepsilon_{R}^{\prime}(g)(\psi)=\int_{R} \psi(y) \sum_{n \geq 1} \frac{\alpha(y / n)}{n} d y-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y \int_{R} \psi(x) d x
$$

Sa the distribution $\varepsilon_{R}^{\prime}(g)$ is in fact the enen smooth function

$$
\varepsilon_{R}^{\prime}(g)(y)=\sum_{n \geq 1} \frac{\alpha(y / n)}{n}-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y
$$

As $\alpha(y)$ has compact support in $R \backslash\{0\}$, the summation ouer $n \geq 1$ cantains anly wanishing terms for $|y|$ small enough. Sa $\varepsilon_{R}^{\prime}(g)$ is equal to the constant $-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y=-\int_{R} \times \frac{f(y)}{\sqrt{|y|}} \frac{d y}{2|y|}=$ $-\int_{\boldsymbol{A} \times} \times g(t) / \sqrt{|t|} d^{*} t$ in a neighbarhood of 0 . To prove that it is 1^{2}, let $\beta(y)$ be the smooth compactly supported function $\alpha(1 / y) / 2|y|$ of $y \in R(\beta(0)=0)$. Then $(y \neq 0)$:

$$
\varepsilon_{R}^{\prime}(g)(y)=\sum_{n \in Z} \frac{1}{|y|} \beta\left(\frac{n}{y}\right)-\int_{R} \beta(y) d y
$$

From the usual Paissan summation formula, this is alsa:

$$
\sum_{n \in Z} \gamma(m y)-\int_{R} \beta(y) d y=\sum_{n \neq 0} \gamma(m y)
$$

where $\gamma(y)=\int_{\mathcal{R}} \exp (i 2 \pi y c u) \beta(c u)$ due is a Schcuartz rapidly decreasing function. From this farmula we deduce easily that $E_{R}^{\prime}(g)(y)$ is itself in the Schcuartz class of rapidly decreasing functions, and in particular it is is square-integrable.

It is useful to recapitulate some of the results arising in this praof:

Thearem 2. Set g be a compact Bruhat-Schwarts function on the ideles of 2. The ca-Paisson summation $\varepsilon_{R}^{\prime}(g)$ is an enen function on R in the Schwartz class of rapidly decreasing functions. It is constant, as well as its Faurier 7ransfarm, in a neighbarhood of the arigin. It may be curitten as

$$
\varepsilon_{R}^{\prime}(g)(y)=\sum_{n \geq 1} \frac{\alpha(y / n)}{n}-\int_{0}^{\infty} \frac{\alpha(y)}{y} d y
$$

with a function $\alpha(y)$ smooth with compact support away from the arigin, and conuersely each such farmula correspands to the caPaisson summation $\varepsilon_{R}^{\prime}(g)$ of a compact Bruhat-Schwartz functian an the ideles of 2. The Faurier transform $\int_{R} \varepsilon_{R}^{\prime}(g)(y) \exp (i 2 \pi c u y) d y$ correspands in the farmula above to the replacement $\alpha(y) \mapsto$ $\alpha(1 / y) /|y|$.

Enerything has been abtained previansly.

