This example is set up in Baskervald ADF with Fourier. It uses: \usepackage[upright]{fourier} \usepackage{baskervald} \usepackage[defaultmathsizes,noasterisk]{mathastext} Typeset with mathastext 1.13 (2011/03/11). To illustrate some Hilbert Space properties of the co-Poisson summation, we will assume $K = \mathbf{Q}$. The components (a_v) of an adele a are written a_p at finite places and a_r at the real place. We have an embedding of the Schwartz space of test-functions on \mathbf{R} into the Bruhat-Schwartz space on \mathbf{A} which sends $\psi(x)$ to $\varphi(a) = \prod_p \mathbf{1}_{|a_p|_p \le 1}(a_p) \cdot \psi(a_r)$, and we write $E_{\mathbf{R}}'(g)$ for the distribution on \mathbf{R} thus obtained from E'(g) on \mathbf{A} . **Theorem 1.** Let g be a compact Bruhat-Schwartz function on the ideles of \mathbf{Q} . The co-Poisson summation $E'_{\mathbf{R}}(g)$ is a square-integrable function (with respect to the Lebesgue measure). The $L^2(\mathbf{R})$ function $E'_{\mathbf{R}}(g)$ is equal to the constant $-\int_{\mathbf{A}^{\times}} g(v)|v|^{-1/2}d^*v$ in a neighborhood of the origin. *Proof.* We may first, without changing anything to $E_{\mathbf{R}}'(g)$, replace g with its average under the action of the finite unit ideles, so that it may be assumed invariant. Any such compact invariant g is a finite linear combination of suitable multiplicative translates of functions of the type $g(v) = \prod_p \mathbf{1}_{|v_p|_p = 1}(v_p) \cdot f(v_r)$ with f(t) a smooth compactly supported function on \mathbf{R}^{\times} , so that we may assume that g has this form. We claim that: $$\int_{\mathbf{A}^\times} |\phi(v)| \sum_{q \in \mathbf{Q}^\times} |g(qv)| \sqrt{|v|} \, d^*v \le \infty$$ Indeed $\sum_{q\in \mathbf{Q}^\times}|g(qv)|=|f(|v|)|+|f(-|v|)|$ is bounded above by a multiple of |v|. And $\int_{\mathbf{A}^\times}|\phi(v)||v|^{3/2}\,d^*v\le\infty$ for each Bruhat-Schwartz function on the adeles (basically, from $\prod_p(1-p^{-3/2})^{-1}\le\infty$). So $$E'(g)(\phi) = \sum_{q \in \mathbf{Q}^{\times}} \int_{\mathbf{A}^{\times}} \phi(v)g(qv)\sqrt{|v|} d^{*}v - \int_{\mathbf{A}^{\times}} \frac{g(v)}{\sqrt{|v|}} d^{*}v \int_{\mathbf{A}} \phi(x) dx$$ $$E'(g)(\phi) = \sum_{q \in \mathbf{Q}^{\times}} \int_{\mathbf{A}^{\times}} \phi(v/q)g(v)\sqrt{|v|} d^{*}v - \int_{\mathbf{A}^{\times}} \frac{g(v)}{\sqrt{|v|}} d^{*}v \int_{\mathbf{A}} \phi(x) dx$$ Let us now specialize to $\phi(a) = \prod_p \mathbf{1}_{|a_p|_p \le 1}(a_p) \cdot \psi(a_r)$. Each integral can be evaluated as an infinite product. The finite places contribute 0 or 1 according to whether $q \in \mathbf{Q}^{\times}$ satisfies $|q|_p \le 1$ or not. So only the inverse integers q = 1/n, $n \in \mathbf{Z}$, contribute: $$E_{\mathbf{R}}'(g)(\psi) = \sum_{\mathbf{n} \in \mathbf{Z}^{\times}} \int_{\mathbf{R}^{\times}} \psi(\mathbf{n}t) f(t) \sqrt{|t|} \frac{dt}{2|t|} - \int_{\mathbf{R}^{\times}} \frac{f(t)}{\sqrt{|t|}} \frac{dt}{2|t|} \int_{\mathbf{R}} \psi(x) dx$$ We can now revert the steps, but this time on \mathbf{R}^{\times} and we get: $$E_{\mathbf{R}}'(g)(\psi) = \int_{\mathbf{R}^{\times}} \psi(t) \sum_{n \in \mathbf{Z}^{\times}} \frac{f(t/n)}{\sqrt{|n|}} \frac{dt}{2\sqrt{|t|}} - \int_{\mathbf{R}^{\times}} \frac{f(t)}{\sqrt{|t|}} \frac{dt}{2|t|} \int_{\mathbf{R}} \psi(x) dx$$ Let us express this in terms of $\alpha(y) = (f(y) + f(-y))/2\sqrt{|y|}$: $$E_{\mathbf{R}}'(g)(\psi) = \int_{\mathbf{R}} \psi(y) \sum_{n \ge 1} \frac{\alpha(y/n)}{n} dy - \int_0^\infty \frac{\alpha(y)}{y} dy \int_{\mathbf{R}} \psi(x) dx$$ So the distribution $E'_{\mathbf{R}}(g)$ is in fact the even smooth function $$E'_{\mathbf{R}}(g)(y) = \sum_{n>1} \frac{\alpha(y/n)}{n} - \int_0^\infty \frac{\alpha(y)}{y} dy$$ As $\alpha(y)$ has compact support in $\mathbf{R}\setminus\{0\}$, the summation over $n\geq 1$ contains only vanishing terms for |y| small enough. So $E_{\mathbf{R}}'(g)$ is equal to the constant $-\int_0^\infty \frac{\alpha(y)}{y} \mathrm{d}y = -\int_{\mathbf{R}^\times} \frac{f(y)}{\sqrt{|y|}} \frac{\mathrm{d}y}{2|y|} = -\int_{\mathbf{A}^\times} g(t)/\sqrt{|t|} \, \mathrm{d}^*t$ in a neighborhood of 0. To prove that it is L^2 , let $\beta(y)$ be the smooth compactly supported function $\alpha(1/y)/2|y|$ of $y \in \mathbf{R}$ ($\beta(0) = 0$). Then $(y \neq 0)$: $$E'_{\mathbf{R}}(g)(y) = \sum_{\mathbf{n} \in \mathbf{Z}} \frac{1}{|y|} \beta(\frac{\mathbf{n}}{y}) - \int_{\mathbf{R}} \beta(y) \, dy$$ From the usual Poisson summation formula, this is also: $$\sum_{n \in \mathbf{Z}} \gamma(ny) - \int_{\mathbf{R}} \beta(y) \, dy = \sum_{n \neq 0} \gamma(ny)$$ where $\gamma(y) = \int_{\mathbf{R}} \exp(i\,2\pi y w) \beta(w) \,dw$ is a Schwartz rapidly decreasing function. From this formula we deduce easily that $E_{\mathbf{R}}'(g)(y)$ is itself in the Schwartz class of rapidly decreasing functions, and in particular it is is square-integrable. It is useful to recapitulate some of the results arising in this proof: **Theorem 2.** Let g be a compact Bruhat-Schwartz function on the ideles of Q. The co-Poisson summation $E'_{R}(g)$ is an even function on R in the Schwartz class of rapidly decreasing functions. It is constant, as well as its Fourier Transform, in a neighborhood of the origin. It may be written as $$E'_{\mathbf{R}}(g)(y) = \sum_{n \ge 1} \frac{\alpha(y/n)}{n} - \int_0^\infty \frac{\alpha(y)}{y} dy$$ with a function $\alpha(y)$ smooth with compact support away from the origin, and conversely each such formula corresponds to the co-Poisson summation $E_{\mathbf{R}}'(g)$ of a compact Bruhat-Schwartz function on the ideles of \mathbf{Q} . The Fourier transform $\int_{\mathbf{R}} E_{\mathbf{R}}'(g)(y) \exp(i2\pi wy) \, dy$ corresponds in the formula above to the replacement $\alpha(y) \mapsto \alpha(1/y)/|y|$. Everything has been obtained previously.