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To illustrate some Hilbert Space properties of the co-Poisson summation,
we will assume K = Q. The components (aν) of an adele a are written ap at
finite places and ar at the real place. We have an embedding of the Schwartz
space of test-functions on R into the Bruhat-Schwartz space on A which sends
ψ(x) to φ(a) =

∏
p 1|ap |p≤1(ap) · ψ(ar), and we write E′R(g) for the distribution

on R thus obtained from E′(g) on A.

Theorem 1. Let g be a compact Bruhat-Schwartz function on the ideles of
Q. The co-Poisson summation E′R(g) is a square-integrable function (with
respect to the Lebesgue measure). The L2(R) function E′R(g) is equal to the
constant –

∫
A× g(v)|v|

–1/2d*v in a neighborhood of the origin.

Proof. We may first, without changing anything to E′R(g), replace g with its
average under the action of the finite unit ideles, so that it may be assumed in-
variant. Any such compact invariant g is a finite linear combination of suitable
multiplicative translates of functions of the type g(v) =

∏
p 1|vp |p=1(vp) · f(vr)

with f(t) a smooth compactly supported function on R×, so that we may as-
sume that g has this form. We claim that:∫

A×
|φ(v)|

∑
q∈Q×
|g(qv)|

√
|v| d*v < ∞

Indeed
∑
q∈Q× |g(qv)| = |f(|v|)| + |f(–|v|)| is bounded above by a multiple of |v|.

And
∫
A× |φ(v)||v|

3/2 d*v < ∞ for each Bruhat-Schwartz function on the adeles
(basically, from

∏
p(1 – p–3/2)–1 < ∞). So

E′(g)(φ) =
∑
q∈Q×

∫
A×
φ(v)g(qv)

√
|v| d*v –

∫
A×

g(v)
√
|v|
d*v
∫
A
φ(x) dx

E′(g)(φ) =
∑
q∈Q×

∫
A×
φ(v/q)g(v)

√
|v| d*v –

∫
A×

g(v)
√
|v|
d*v
∫
A
φ(x) dx

Let us now specialize to φ(a) =
∏
p 1|ap |p≤1(ap) · ψ(ar). Each integral can be

evaluated as an infinite product. The finite places contribute 0 or 1 according
to whether q ∈ Q× satisfies |q|p < 1 or not. So only the inverse integers
q = 1/n, n ∈ Z, contribute:

E′R(g)(ψ) =
∑
n∈Z×

∫
R×
ψ(nt)f(t)

√
|t| dt
2|t| –

∫
R×

f(t)
√
|t|
dt
2|t|

∫
R
ψ(x) dx

We can now revert the steps, but this time on R× and we get:

E′R(g)(ψ) =
∫
R×
ψ(t)
∑
n∈Z×

f(t/n)
√
|n|
dt
2
√
|t|
–
∫
R×

f(t)
√
|t|
dt
2|t|

∫
R
ψ(x) dx



Let us express this in terms of α(y) = (f(y) + f(–y))/2
√
|y|:

E′R(g)(ψ) =
∫
R
ψ(y)
∑
n≥1

α(y/n)
n
dy –
∫ ∞

0

α(y)
y
dy
∫
R
ψ(x) dx

So the distribution E′R(g) is in fact the even smooth function

E′R(g)(y) =
∑
n≥1

α(y/n)
n
–
∫ ∞

0

α(y)
y
dy

As α(y) has compact support in R \ {0}, the summation over n ≥ 1 con-
tains only vanishing terms for |y| small enough. So E′R(g) is equal to the con-
stant –

∫ ∞
0

α(y)
y dy = –

∫
R×
f(y)√
|y|
dy
2|y| = –

∫
A× g(t)/

√
|t| d*t in a neighborhood of 0.

To prove that it is L2, let β(y) be the smooth compactly supported function
α(1/y)/2|y| of y ∈ R (β(0) = 0). Then (y , 0):

E′R(g)(y) =
∑
n∈Z

1
|y|β(
n
y
) –
∫
R
β(y) dy

From the usual Poisson summation formula, this is also:∑
n∈Z

γ(ny) –
∫
R
β(y) dy =

∑
n,0

γ(ny)

where γ(y) =
∫
R exp(i 2πyw)β(w) dw is a Schwartz rapidly decreasing func-

tion. From this formula we deduce easily that E′R(g)(y) is itself in the Schwartz
class of rapidly decreasing functions, and in particular it is is square-integrable.

□

It is useful to recapitulate some of the results arising in this proof:
Theorem 2. Let g be a compact Bruhat-Schwartz function on the ideles
of Q. The co-Poisson summation E′R(g) is an even function on R in the
Schwartz class of rapidly decreasing functions. It is constant, as well as its
Fourier Transform, in a neighborhood of the origin. It may be written as

E′R(g)(y) =
∑
n≥1

α(y/n)
n
–
∫ ∞

0

α(y)
y
dy

with a function α(y) smooth with compact support away from the origin,
and conversely each such formula corresponds to the co-Poisson summa-
tion E′R(g) of a compact Bruhat-Schwartz function on the ideles of Q. The
Fourier transform

∫
R E
′
R(g)(y) exp(i2πwy) dy corresponds in the formula above

to the replacement α(y) 7→ α(1/y)/|y|.
Everything has been obtained previously.


